Tag Pentanes

Cyclopentane, as a blowing agent in Polyurethane (PU) foams, is the most important raw material for high-performance insulation in refrigerators

High Purity Production Technology of Cyclopentane

Cyclopentane, also known as pentamethylene, is a kind of hydrocarbon. It is used to replace freon as a foaming agent for refrigerator freezer insulation materials and hard PU foam. It is used as a solvent for solution polymerization of polyisoprene rubber and cellulose ether. Isopentane is one of the components of petroleum ether. It is obtained through the recombination of isopentane under the action of platinum. It has a broad market prospect. High purity industrial grade requires high cyclopentane itself, so it is of great significance to strengthen the research on purification technology of high purity cyclopentane.
Cyclopentane has low thermal conductivity, good anti-aging performance, no damage to the ozone layer, and many advantages in solubility in polyols. At present, cyclopentane production mainly relies on petrochemical raw materials, mainly petrochemical C5 fraction. Cyclopentane is a component of petroleum ether in the boiling point range of 30-60 ℃, and its content is generally 5%-10%. It is distilled under normal pressure in a 8m high tower with a reflux ratio of 60:1. Isopentane and n-pentane are first evaporated, and then fractionated to obtain cyclopentane with a purity of more than 98%. Cyclopentane can also be prepared by reduction of Cyclopentanone or catalytic hydrogenation of cyclopentadiene.

Cyclopentane Blowing Agent

The spontaneous combustion temperature of cyclopentane blowing agent is about 380 ℃. The normal temperature of 50 ℃ will not cause spontaneous combustion. Harmful effects of cyclopentane inhalation of high concentrations of cyclopentane can cause central nervous system depression, although its acute toxicity is low. The symptoms caused by acute exposure are first excitement, then imbalance, even numbness and coma. Rarely die of respiratory failure. It has been reported that this product was given orally to animals, resulting in severe diarrhea, heart, lung and liver vascular collapse and brain degeneration.

Cyclopentane and Freon are both substances that are easy to liquefy and vaporize. They should absorb heat during vaporization and release heat during liquefaction; Liquid cyclopentane flows in the pipe. When it flows to the freezer, it will vaporize and absorb heat, absorbing the heat in the refrigerator and reducing the temperature in the refrigerator; When it flows into the condenser, it will be compressed and liquefied, and the absorbed heat will be released to achieve the purpose of refrigeration.
In the past, most of the traditional water tank insulation materials in the solar industry used polyurethane foaming technology. This material has many disadvantages, such as consuming oil resources, destroying the ozone layer with HCFC-141b foaming agent, and “white pollution” caused by waste foam. It does not meet the environmental protection requirements. Cyclopentane, as a new environmentally friendly foaming agent, has brought greater improvement to our environment and life, but cyclopentane is flammable and volatile, It is easy to cause combustion and explosion in case of open fire. Pay special attention to safety during use.

Junyuan Petroleum Group is a new chemical enterprise integrating R & D, production and marketing. The company’s products cover four major fields: refrigerant, carbon hydride, fluoride and chemical raw materials. Its main products are n-pentane and isopentane Pentane blowing agent, n-hexane, isohexane, n-heptane, n-octane, petroleum ether, isobutane R600a, n-butane R600, propane R290, propylene R1270, n-pentane r601, isopentane r601a, cyclopentane, isobutene, ethylene R1150, R22, R23, r507, ethane R170, methane, freon, dimethyl ether, isooctane, n-heptane, propylene butane, n-hexane, n-hexene, n-butene and other blowing agents, aerosols and solvents; The company is committed to science and technology and environmental protection industries. Its products are widely used in refrigeration, energy, electronics, pharmaceutical intermediates, scientific research, laser technology, aerospace technology, metal smelting, low-temperature refrigeration and other fields. Its customers radiate in Europe, America, the Middle East and Southeast Asia.

Polyolefin foams made with isopentane-based blowing agents

Polyolefin foams made with isopentane-based blowing agents
A blowing agent blend for making polyolefin foams comprising isopentane and at least one co-blowing agent The co-blowing agent is either a physical co-blowing agent having a boiling point less than 28° C., or a chemical co-blowing agent, or combinations thereof The blowing agent blend comprises less than about 99 mol % isopentane.

Inventors:
Handa, Paul Y. (Pittsford, NY, US)
Gu, Jiayan (Farmington, NY, US)
Application Number:
10/188263
Publication Date:
01/08/2004
Filing Date:
07/02/2002
Assignee:
HANDA Y. PAUL
GU JIAYAN
Other Classes:

516/12
International Classes:
C08J9/12; C08J9/14; (IPC1-7): C08J9/00


Primary Examiner:

FOELAK, MORTON
Attorney, Agent or Firm:
NIXON PEABODY LLP (CHICAGO, IL, US)
Claims:

What is claimed is:



1. A blowing agent blend for making polyolefin foams comprising isopentane and at least one co-blowing agent, the co-blowing agent being either a physical co-blowing agent having a boiling point less than 28° C., or a chemical co-blowing agent, or combinations thereof, and wherein the blowing agent blend comprises less than about 99 mol % isopentane.

2. The blowing agent blend of claim 1, wherein the polyolefin foam is dimensionally stable.

3. The blowing agent blend of claim 1, wherein the co-blowing agent includes at least one physical co-blowing agent, the at least one physical co-blowing agent being ethane, n-propane, n-butane, isobutane, cyclopropane, nitrogen, argon, carbon dioxide, sulfur hexafluoride, nitrous oxide, dimethyl ether, 1,1-difluoroethane (HFC-152a), 1,1,1-trifluoroethane (HFC-143a), 1,1,1,2-tetrafluoroethane (HFC-134a), 1,1,2,2-tetrafluoroethane (HFC-134), 1,1,1,3,3-pentafluoropropane (HFC-245fa) or combinations thereof.

4. The blowing agent blend of claim 1, wherein the blowing agent blend includes a chemical co-blowing agent.

5. The blowing agent blend of claim 1, wherein the blowing agent blend comprises from about 10 mol % to about 60 mol % isopentane.

6. The blowing agent blend of claim 5, wherein the blowing agent blend comprises from about 15 mol % to about 40 mol % isopentane.

7. The blowing agent blend of claim 6, wherein the blowing agent blend comprises from about 25 mol % to about 40 mol % isopentane.

8. The blowing agent blend of claim 1, wherein the polyolefin foam comprises polyethylene.

9. The blowing agent blend of claim 1, wherein the polyolefin foam has a density of less than 3 lb/ft3.

10. A polyolefin foam structure prepared by the process comprising: melting a thermoplastic polyolefin polymer, dissolving an effective amount of a blowing agent blend in the polyolefin polymer, the blowing agent blend comprising less than about 99 mol % isopentane and at least one co-blowing agent, the co-blowing agent being either a physical co-blowing agent having a boiling point less than 28° C., or a chemical co-blowing agent, or combinations thereof, forming an extrudate, transferring the extrudate to an expansion zone, and permitting the extrudate to expand in the expansion zone to produce the polyolefin foam structure, the polyolefin foam structure being a substantially closed-cell and dimensionally-stable structure.

11. The polyolefin foam structure of claim 10, wherein the extrudate comprises from about 1 to about 18 wt % blowing agent.

12. The polyolefin foam structure of claim 10, wherein the polyolefin foam structure has at least 20 cells per inch.

13. The polyolefin foam structure of claim 12, wherein the polyolefin foam structure has at least 25 cells per inch.

14. The polyolefin foam structure of claim 13, wherein the polyolefin foam structure has at least 30 cells per inch.

15. The polyolefin foam structure of claim 10, wherein the polyolefin foam structure is a sheet.

16. The polyolefin foam structure of claim 10, wherein the polyolefin foam structure is a plank.

17. The polyolefin foam structure of claim 10 further including mixing a nucleating agent and the thermoplastic polyolefin polymer to form a mixture, and dissolving an effective amount of the blowing agent blend into the mixture.

18. The polyolefin foam structure of claim 10 further including: melting a stability control agent, mixing the stability control agent and the thermoplastic polyolefin polymer to form a mixture, and dissolving an effective amount of the blowing agent blend into the mixture.

19. The polyolefin foam structure of claim 10, wherein the polyolefin foam structure comprises polyethylene.

20. The polyolefin foam structure of claim 19, wherein the polyolefin foam structure comprises low density polyethylene.

21. The polyolefin foam structure of claim 10, wherein the polyolefin foam structure has a density of less than 3 lb/ft3.

22. A process for making a polyolefin foam structure comprising: melting a thermoplastic polyolefin polymer, dissolving an effective amount of a blowing agent blend in the polyolefin polymer, the blowing agent blend comprising less than about 99 mol % isopentane and at least one co-blowing agent, the co-blowing agent being either a physical co-blowing agent having a boiling point less than 28° C., or a chemical co-blowing agent, or combinations thereof, forming an extrudate, transferring the extrudate to an expansion zone, and permitting the extrudate to expand in the expansion zone to produce the polyolefin foam structure.

23. The process of claim 22, wherein the polyolefin structure is a substantially closed-cell and dimensionally stable structure.

24. The process of claim 22, wherein the extrudate comprises from about 1 to about 18 wt % blowing agent.

25. The process of claim 22 further including mixing a nucleating agent and the thermoplastic polyolefin polymer to form a mixture, and dissolving an effective amount of the blowing agent blend into the mixture.

26. The process of claim 22 further including: melting a stability control agent, mixing the stability control agent and the thermoplastic polyolefin polymer to form a mixture, and dissolving an effective amount of the blowing agent blend into the mixture.

27. The process of claim 22, wherein the co-blowing agent includes at least one physical co-blowing agent, the at least one physical co-blowing agent being ethane, n-propane, n-butane, isobutane, cyclopropane, nitrogen, argon, carbon dioxide, sulfur hexafluoride, nitrous oxide, dimethyl ether, 1,1-difluoroethane (HFC-152a), 1,1,1-trifluoroethane (HFC-143a), 1,1,1,2-tetrafluoroethane (HFC-134a), 1,1,2,2-tetrafluoroethane (HFC-134), 1,1,1,3,3-pentafluoropropane (HFC-245fa) or combinations thereof.

28. The process of claim 22, wherein the blowing agent blend includes a chemical co-blowing agent.

29. The process of claim 22, wherein the blowing agent blend comprises from about 10 mol % to about 60 mol % isopentane.

30. The process of claim 29, wherein the blowing agent blend comprises from about 15 mol % to about 40 mol % isopentane.

31. The process of claim 30, wherein the blowing agent blend comprises from about 25 mol % to about 40 mol % isopentane.

32. The process of claim 22, wherein the polyolefin foam structure comprises polyethylene.

33. The process of claim 32, wherein the polyolefin foam structure comprises low density polyethylene.

34. The process of claim 22, wherein the polyolefin foam structure has a density of less than 3 lb/ft3.

35. A blowing agent blend for foaming low density polyethylene foam consisting essentially of isopentane and at least one co-blowing agent, the co-blowing agent being either a physical co-blowing agent having a boiling point less than 28° C., or a chemical co-blowing agent, or combinations thereof, and wherein the blowing agent blend includes from about 10 to about 99 mol % isopentane and the remainder consists essentially of the co-blowing agent.

36. The blowing agent blend of claim 35, wherein the co-blowing agent includes at least one physical co-blowing agent, the at least one physical co-blowing agent being ethane, n-propane, n-butane, isobutane, cyclopropane, nitrogen, argon, carbon dioxide, sulfur hexafluoride, nitrous oxide, dimethyl ether, 1,1-difluoroethane (HFC-152a), 1,1,1-trifluoroethane (HFC-143a), 1,1,1,2-tetrafluoroethane (HFC-134a), 1,1,2,2-tetrafluoroethane (HFC-134), 1,1,1,3,3-pentafluoropropane (HFC-245fa) or combinations thereof.

37. The blowing agent blend of claim 35, wherein the blowing agent blend comprises from about 10 mol % to about 60 mol % isopentane.

38. The blowing agent blend of claim 37, wherein the blowing agent blend comprises from about 25 mol % to about 40 mol % isopentane.

39. A process for making a low density polyethylene foam structure prepared by the process comprising: melting a low density polyethylene polymer; dissolving an effective amount of a blowing agent blend in the low density polyethylene polymer, the blowing agent blend comprising from about 10 to about 99 mol % isopentane and at least one co-blowing agent, the co-blowing agent being either a physical co-blowing agent having a boiling point less than 28° C., or a chemical co-blowing agent, or combinations thereof, forming an extrudate, transferring the extrudate to an expansion zone, and permitting the extrudate to expand in the expansion zone to produce the low density polyethylene structure.

40. The process of claim 39 further including: melting a stability control agent, mixing a nucleating agent, the stability control agent and the thermoplastic polyolefin polymer to form a mixture, and dissolving an effective amount of the blowing agent blend into the mixture.

41. The process of claim 40, wherein the nucleating agent is talc, and the stability control agent is glycerol monostearate.

42. The process of claim 39, wherein the co-blowing agent includes at least one physical co-blowing agent, the at least one physical co-blowing agent being ethane, n-propane, n-butane, isobutane, cyclopropane, nitrogen, argon, carbon dioxide, sulfur hexafluoride, nitrous oxide, dimethyl ether, 1,1-difluoroethane (HFC-152a), 1,1,1-trifluoroethane (HFC-143a), 1,1,1,2-tetrafluoroethane (HFC-134a), 1,1,2,2-tetrafluoroethane (HFC-134), 1,1,1,3,3-pentafluoropropane (HFC-245fa) or combinations thereof.

43. The process of claim 39, wherein the blowing agent blend includes a chemical co-blowing agent.

44. The process of claim 39, wherein the blowing agent blend comprises from about 10 mol % to about 60 mol % isopentane.

45. The process of claim 44, wherein the blowing agent blend comprises from about 25 mol % to about 40 mol % isopentane.

46. The process of claim 39, wherein the low density polyethylene foam has a density of less than 3 lb/ft3.

Description:

FIELD OF INVENTION

[0001] The present invention relates generally to foams using blowing agent blends or mixtures, and processes of making the same More particularly, the present invention relates to polyolefin foams using isopentane-based blowing agent blends that produce a stable foam with minimized or no corrugation, and processes of making the same.

BACKGROUND OF THE INVENTION

[0002] Polyolefin foam, such as low density polyethylene foam, is commonly made by combining a physical blowing agent with molten polyethylene resin under pressure and, after thorough mixing, extruding the combination through an appropriate die into a lower pressure atmosphere.

[0003] In the past, physical blowing agents widely used for making polyolefin foams were chlorofluorocarbons and hydrochlorofluorocarbons. Use of such blowing agents, however, has been or will be banned because of environmental concerns.

[0004] Presently, physical blowing agents more commonly used for making low density polyethylene (LDPE) foams are hydrocarbons such as isobutane or blends of isobutane and n-butane. Other hydrocarbons such as ethane and propane have been used more recently in making LDPE foams. The ability of isobutane, n-butane, propane, ethane and combinations thereof to give stable, low density foams depends on factors such as desirable solubility in low density polyethylene, and the ability of gas permeation modifiers to slow down the escape of such blowing agents. The resultant foam article (e.g., a sheet) using such blowing agents is frequently produced with at least some corrugation. Corrugation occurs when the radial rate of expansion is higher than the radial space available for the foam as it exits the die. Corrugation may be reduced to a certain extent by optimizing the foaming process and apparatus used in forming the foam with these blowing agents, but a low degree of corrugation or visible corrugation lanes often remain. The corrugation becomes more pronounced when a fluid with a very low boiling point (e.g., ethane or propane) is (a) used as the sole blowing agent or (b) present in an amount greater than about 5 mol % with a higher boiling fluid (e.g, isobutane). Corrugation also tends to occur more frequently in sheets (thickness of up to about ½ inch) as opposed to planks (thickness of greater than about an inch), and the degree and magnitude of corrugation increase as the foam density decreases.

[0005] Therefore, a need exists for a stable foam having minimized or no corrugation, and a process for making the same.

SUMMARY OF THE INVENTION

[0006] According to one embodiment of the present invention, a blowing agent blend for making polyolefin foams comprises isopentane and at least one co-blowing agent. The co-blowing agent is either a physical co-blowing agent having a boiling point less than 28° C., or a chemical co-blowing agent, or combinations thereof. The blowing agent blend comprises less than about 99 mol % isopentane. The polyolefin foam may be a low density polyethylene foam. The blowing agent blend may consist essentially of isopentane and the co-blowing agent in which the blowing agent blend includes about 10 to about 99 mol % isopentane with the remainder consisting essentially of the co-blowing agent.

[0007] According to another embodiment, a polyolefin foam structure is prepared by the process comprising melting a thermoplastic polyolefin polymer. An effective amount of a blowing agent blend is dissolved in the polyolefin polymer melt. The blowing agent blend comprises less than about 99 mol % isopentane and at least one co-blowing agent. The co-blowing agent is either a physical co-blowing agent having a boiling point less than about 28° C., or a chemical co-blowing agent, or combinations thereof. An extrudate is formed and transferred to an expansion zone. The extrudate is permitted to expand in the expansion zone to produce the polyolefin foam structure that is a substantially closed-cell and dimensionally-stable structure.

[0008] According to a process of the present invention, a polyolefin foam structure is produced that comprises melting a thermoplastic polyolefin polymer. An effective amount of a blowing agent blend is dissolved in the polyolefin polymer melt. The blowing agent blend comprises less than about 99 mol % isopentane and at least one co-blowing agent. The co-blowing agent is either a physical co-blowing agent having a boiling point less than about 28° C., or a chemical co-blowing agent, or combinations thereof. An extrudate is formed and is transferred to an expansion zone. The extrudate is permitted to expand in the expansion zone to produce the polyolefin foam structure. The polyolefin foam structure may comprise a low density polyethylene.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] FIGURE is a schematic flow diagram of an overall sequence of operations involved in the manufacture of a foamed polyolefin sheet with the blowing agent blends according to one embodiment of the present invention.

[0010] While the invention is susceptible to various modifications and alternative forms, specific embodiments thereof have been shown by way of example in the drawing and will herein be described in detail. It should be understood, however, that it is not intended to limit the invention to the particular forms disclosed but, on the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the appended claims.

DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS

[0011] Resins that can be foamed in accordance with the present invention include polyolefin resins such as ethylenic polymers and propylenic polymers. Suitable ethylenic polymer materials include ethylenic homopolymers, and copolymers of ethylenic compounds and copolymerizable ethylenically unsaturated comonomers. The ethylenic polymer material may further include minor proportions of non-ethylenic polymers. The ethylenic polymer material may be comprised solely of one or more ethylenic homopolymers, one or more ethylenic copolymers, a blend of one or more of each of ethylenic homopolymers and copolymers, or blends of any of the foregoing with a non-ethylenic polymer. Regardless of composition, the ethylenic polymer material comprises greater than 50 and preferably greater than 70 wt % of ethylenic monomeric units. Most preferably, the ethylenic polymer material is comprised completely of ethylenic monomeric units. Most preferred ethylenic polymers are polyethylene homopolymers. Polyethylenes may be of the high, medium, low, linear low, or ultra-low density type. Most preferred are low density polyethylenes. The polyethylenes may be linear, branched or cross-linked.

[0012] Suitable ethylenic copolymers may be comprised of ethylenic monomeric units and minor amounts, preferably 20 wt % or less, of a monoethylenically unsaturated monomeric unit or units copolymerizable therewith. Suitable comonomers include C1-4 alkyl acids and esters, ionomeric derivatives, C2-6 dienes and C3-9 olefins. Examples of suitable comonomers include acrylic acid, itaconic acid, maleic acid, methacrylic acid, ethacrylic acid, methyl acrylate, methyl methacrylate, ethyl acrylate, vinyl acetate, carbon monoxide, maleic anhydride, acrylonitrile, propylene, isobutylene, and butadiene.

[0013] Polypropylene that may be used in the present invention includes polypropylene homopolymer or copolymers. Various polypropylenes that may be suitable in the present invention include, but are not limited to, atactic, isotactic, syndiotactic, long-chain branched, and propylene/ethylene copolymers.

[0014] The foam processes of the present invention employ a blowing agent blend or mixture to achieve a stable polyolefin foam with minimized or no corrugation. The blowing agent blend used in forming polyolefin foam is isopentane-based. The blowing agents blend comprises at least isopentane and at least one co-blowing agent. The co-blowing agent(s) can be physical, chemical or combinations thereof. The blowing agent blend comprises less than about 99 mol % isopentane.

[0015] A physical co-blowing agent is defined herein as having a boiling point less than 28° C. The co-blowing agent is fast expanding as compared to a pure isopentane blowing agent. The physical blowing agent may be inorganic or organic. Some suitable inorganic blowing agents include, but are not limited to, air, nitrogen, argon, xenon, carbon dioxide, sulfur hexafluoride, nitrous oxide, ammonia, silicon tetrafluoride, nitrogen trifluoride, boron trifluoride, and boron trichloride. Some examples of organic co-blowing agents that may be used in the present invention include, but are not limited to, hydrocarbons, halogenated hydrocarbons, fluids with polar groups, and combinations thereof. Hydrocarbons include, but are not limited to, methane, ethane, propane, cyclopropane, n-butane, isobutane, cyclobutane, and neopentane. Halogenated hydrocarbons include, but are not limited to, methyl fluoride, difluoromethane (HFC-32), trifluoromethane (HFC-23), perfluoromethane, chlorodifluoromethane (HCFC-22), methylene chloride, ethyl chloride, ethyl fluoride, 1,1-difluoroethane (HFC-152a), 1,1,1-trifluoroethane (HFC-143a), 1,1,1,2-tetrafluoroethane (HFC- 134a), 1,1,2,2-tetrafluoroethane (HFC-134), pentafluoroethane (HFC-125), perfluoroethane, 1,1-dichloro-1-fluoroethane (HCFC-141b), 1-chloro-1,1-difluoroethane (HCFC-142b), 1,1 -dichloro-2,2,2-trifluoroethane (HCFC-123), and 1-chloro-1,2,2,2-tetrafluoroethane (HCFC-124), difluoropropane, 1,1,1-trifluoropropane, 1,1,1,3,3-pentafluoropropane (HFC-245fa), perfluoropropane, perfluorobutane, perfluorocyclobutane, and vinyl fluoride. Fluids with polar groups include, but are not limited to, dimethyl ether, vinyl methyl ether, methyl ethyl ether, dimethyl fluoroether, diethyl fluoroether, perfluorotetrahydrofuran, dimethylamine, trimethylamine, ethylamine, and perfluoroacetone.

[0016] Chemical co-blowing agents that may be used include azodicarbonamide, azodilsobutyro-nitrile, benzenesulfonhydrazide, 4,4-oxybenzene sulfonyl-semicarbazide, p-toluene sulfonyl semicarbazide, barium azodicarboxylate, N,N′-dimethyl-N,N′-dinitrosoterephthalamide, trihydrazino triazine, and other azo, N-nitroso, carbonate, and sulfonyl hydrazides. There are also various acid/bicarbonate mixtures that decompose into gases when heated For example, mixtures of citric acid and sodium bicarbonate sold under the name HYDROCEROL® can be employed as chemical co-blowing agents.

[0017] The total amount of the blowing agent blend used depends on conditions such as extrusion-process conditions at mixing, the blowing agent blend being used, the composition of the extrudate, and the desired density of the foamed article. The extrudate is defined herein as including the blowing agent blend, a polyolefin resin(s), and any additives. For a foam having a density of from about 1 to about 15 lb/ft3, the extrudate typically comprises from about 18 to about 1 wt % of blowing agent.

[0018] The blowing agent blend used in the present invention comprises less than about 99 mol % isopentane. The blowing agent blend generally comprises from about 10 mol % to about 60 or 75 mol % isopentane. The blowing agent blend more typically comprises from about 15 mol % to about 40 mol % isopentane. More specifically, the blowing agent blend comprises from about 25 or 30 mol % to about 40 mol % isopentane. The blowing agent blend generally comprises at least about 15 or 30 mol % of co-blowing agent(s). More specifically, the blowing agent blend comprises from about 40 to about 85 or 90 mol % of co-blowing agent(s). The blowing agent blend more typically comprises from about 60 mol % to about 70 or 75 mol % of co-blowing agent(s).

[0019] A nucleating agent or combination of such agents may be employed in the present invention for advantages, such as its capability for regulating cell formation and morphology. A nucleating agent, or cell size control agent, may be any conventional or useful nucleating agent(s). The amount of nucleating agent used depends upon the desired cell size, the selected blowing agent blend, and the desired foam density. The nucleating agent is generally added in amounts from about 0.02 to about 20 wt % of the polyolefin resin composition.

[0020] Some contemplated nucleating agents include inorganic materials (in small particulate form), such as clay, talc, silica, and diatomaceous earth. Other contemplated nucleating agents include organic nucleating agents that decompose or react at the heating temperature within an extruder to evolve gases, such as carbon dioxide and/or nitrogen. One example of an organic nucleating agent is a combination of an alkali metal salt of a polycarboxylic acid with a carbonate or bicarbonate. Some examples of alkali metal salts of a polycarboxylic acid include, but are not limited to, the monosodium salt of 2,3-dihydroxy-butanedioic acid (commonly referred to as sodium hydrogen tartrate), the monopotassium salt of butanedioic acid (commonly referred to as potassium hydrogen succinate), the trisodium and tripotassium salts of 2-hydroxy-1,2,3-propanetricarboxylic acid (commonly referred to as sodium and potassium citrate, respectively), and the disodium salt of ethanedioic acid (commonly referred to as sodium oxalate), or polycarboxylic acid such as 2-hydroxy-1,2,3-propanetricarboxylic acid. Some examples of a carbonate or a bicarbonate include, but are not limited to, sodium carbonate, sodium bicarbonate, potassium carbonate, potassium bicarbonate, and calcium carbonate.

[0021] It is contemplated that mixtures of different nucleating agents may be added in the present invention. Some more desirable nucleating agents include talc, crystalline silica, and a stoichiometric mixture of citric acid and sodium bicarbonate (the stoichiometric mixture having a 1 to 100 percent concentration where the carrier is a suitable polymer such as polyethylene). Talc may be added in a carrier or in a powder form.

[0022] Gas permeation agents or stability control agents may be employed in the present invention to assist in preventing or inhibiting collapsing of the foam. The stability control agents suitable for use in the present invention may include the partial esters of long-chain fatty acids with polyols described in U.S. Pat. No. 3,644,230, saturated higher alkyl amines, saturated higher fatty acid amides, complete esters of higher fatty acids such as those described in U.S. Pat. No. 4,214,054, and combinations thereof described in U.S. Pat. No. 5,750,584.

[0023] The partial esters of fatty acids that may be desired as a stability control agent include the members of the generic class known as surface active agents or surfactants. A preferred class of surfactants includes a partial ester of a fatty acid having 12 to 18 carbon atoms and a polyol having three to six hydroxyl groups. More preferably, the partial esters of a long chain fatty acid with a polyol component of the stability control agent is glycerol monostearate, glycerol distearate or mixtures thereof. It is contemplated that other gas permeation agents or stability control agents may be employed in the present invention to assist in preventing or inhibiting collapsing of the foam.

[0024] If desired, fillers, colorants, light and heat stabilizers, anti-oxidants, acid scavengers, flame retardants, processing aids, extrusion aids and foaming additives may be used in making the foam.

[0025] A conventional two-extruder tandem system with each extruder having a single screw may be used for extruding the foam article of the present invention. Alternatively, a two-extruder tandem system in which the primary extruder is a twin screw, and the secondary extruder is a single screw may be used for extruding the foam article of the present invention. A single extruder with proper cooling may also be employed in the present invention.

[0026] According to one process of the present invention, polyolefin resin pellets (e.g., a low density polyethylene) are admixed with a nucleating agent, such as talc, and a stability control agent, such as glycerol monostearate. These materials are continuously fed into a hopper of an extruder. The feed mixture is conveyed forward by a screw within a barrel of the extruder as the mixture is mixed, compressed, heated, and converted to molten form. The conversion to molten form occurs prior to reaching an injection zone where the blowing agent is added. The blowing agent blend of the present invention may be injected into the polyolefinic composition at a point where the polymer is in a melt state (i.e., beyond the feed zone).

[0027] After injecting the blowing agent blend, the mixture is continuously mixed at pressures to ensure a homogeneous solution of the resin and the blowing agent blend. The molten mixture is then conveyed into a cooling zone where additional mixing takes place. After cooling, the mixture may be extruded into a holding zone maintained at a temperature and pressure that prevents or inhibits foaming of the mixture. The holding zone has (a) an outlet die having an orifice opening into a zone of lower pressure such as atmospheric pressure at which the mixture foams, (b) means for closing the orifice without disturbing the foamable mixture within the holding zone, and (c) opening means for allowing the foamable mixture to be ejected from the holding zone. An example of a holding zone is described in U.S. Pat. No. 4,323,528. Regardless of whether a holding zone is used, the mixture is then extruded through a die into a lower pressure zone, such as atmospheric pressure.

[0028] According to one embodiment, a two-extruder tandem system 10 of the FIGURE may be used for extruding a polyolefin foam article (e.g., a sheet) of the present invention. Polyolefin resin pellets such as polyethylene are mixed with at least one additive (e.g., a nucleating agent and/or stability control agent) to form a feed mixture which is fed continuously into a hopper 11 of a primary extruder 13. The feed mixture is conveyed forward by a helical screw within a barrel of the extruder as the feed mixture is mixed, compressed, heated and melted prior to reaching the blowing agent-injection zone. The blowing agent blend (at least isopentane and one co-blowing agent) is added at point 15. Thus, the blowing agent blend of the present invention is injected into the polyethylene/additives mixture (feed mixture) at a point beyond the feed zone where the polyethylene is melted It is contemplated that the blowing agent blend may be injected at other locations, including into a secondary extruder.

[0029] Following injection of the blowing agent blend, the mixture is continuously mixed in the primary extruder 13. The exit pressure of the primary extruder 13 is generally in the range of from about 1200 to about 2500 psi. The temperature of the primary extruder 13 is generally in the range of from about 300 to about 400° F. The mixture is subsequently passed, at a high enough pressure that the blowing agent blend remains in solution, through a hollow adapter section 17 into a cooled secondary tandem extruder 19. The molten mixture is passed along the length of the cooled secondary extruder at low shear where cooling and additional mixing occur. The exit pressure of the secondary extruder 19 is generally in the range of from about 400 to about 1200 psi. The temperature of the extrudate from the secondary extruder 19 is generally in the range of from about 205 to about 220° F. In general, the temperature of the primary extruder should be sufficient to melt the polymer and any additives, and to promote efficient mixing. The temperature and pressure in the secondary extruder should be sufficient to keep the polymer and the blowing agent blend as a homogeneous solution. The mixture is then expressed through an annular die 21, though a die of a different configuration, such as a flat die, may also be used. The foamable polyethylene polymer is extruded through the annular die 21 in the form of an elongated bubble or tube 23. The foamable polyethylene polymer in the FIGURE is expanded and drawn over a cylindrical surface of a cooling and sizing drum 25, and slit to form sheet stock 27. The sheet stock 27 is taken up on one or more winding reels 29.

[0030] If the article produced is a sheet, the thickness of the sheet can be up to about 0.5 inch. If the article produced is a plank, the thickness is generally greater than about one inch. The articles produced from the extruded tube are generally from about 0.020 to about 0.25 inch in thickness.

[0031] The resulting foamed article generally has a density from about 1 to about 15 lb/ft3, more typically from about 2.0 to about 9.0 lb/ft3. When in sheet form, the foamed article is preferably “low density” which is defined herein as being less than 3 lb/ft3. The resultant foamed article has a substantially closed-cell structure and is defined herein as a foam having greater than about 85% closed cells and, more typically, greater than about 95% closed cells.

[0032] The polyolefin foams are light in weight and may be used as protective or flexible packaging for delicate goods such as computers, glassware, televisions, furniture, and any article that needs to be protected from gouging, surface-scratching or marring. It is contemplated that the polyolefin foams of the present invention may be used in other applications such as floor underlayments, flotation foam (e.g., life jackets), toys and recreational parts. Generally speaking, foam sheets are used in flexible packaging, while foam planks are used in protective packaging. In addition to foam sheets and planks, the present invention may take the form of other shapes such as rods.

[0033] The resulting polyolefin foam of the present invention is preferably “dimensionally stable.” Dimensional stability as defined herein is when the density of the foam does not deviate more than about 15% (i.e., the foam does not either shrink more than about 15% or expand more than about 15%) from the density of the polyolefin foam at the time of production. The density of the polyolefin foam at the time of production refers to its density within about 15 minutes, and preferably within 10 minutes, after the foam exits the die. This measurement is used in determining the “fresh” density-of the foam. To have a dimensionally stable product, the foam is typically measured after an aging process (e.g., for LDPEs from about 5 to about 30 days) and compared to its fresh density. It is recognized, however, that in the unlikely event that the foam at a later duration is not within about 15% of its fresh density, then it is not a dimensionally stable product. It is preferable that the foam does not deviate more than about 10% from its “fresh” density.

[0034] It is desirable for some polyolefin foams of the present invention to have a certain number of cells per inch. For example, it is desirable to have at least 20 or 25 cells per inch, and more preferably 30 cells per inch in both the machine and cross-machine directions for a foam that is about 100 mils thick.

EXAMPLES

[0035] Various blowing agents were tested with the results shown below in Tables 1 and 2. Specifically, several foams were made from comparative blowing agents and inventive blowing agent blends. It should be noted that in the various examples reported in Tables 1 and 2, the hardware was the same and operated in exactly the to same way, the only variable was the blowing agent blend. All of the inventive blowing agent blends included (a) isopentane and (b) either ethane, n-propane, isobutane, butanes (a combination of isobutane and n-butane), 1,1,1,2-tetrafluoroethane (HFC-134a), dimethyl ether, or combinations thereof. The comparative blowing agents did not include isopentane, but rather included either ethane, n-propane, isobutane, butanes (a combination of isobutane and n-butane), HFC-134a, or combinations thereof.

[0036] Each of the foams was made with low density polyethylene (LDPE) having a density of 0.920 g/cm3 and a melt index of 2.0 g/10 min at 190° C. In addition to the blowing agents and the LDPE resin, glycerol monostearate and talc were added in forming the foams. Glycerol monostearate, a stability control agent, was added at a concentration level of about 1 wt % of the total solids, and, talc, a nucleating agent, was added at a concentration level of about 0.1 to 1.0 wt % of total solids. Each of the foam samples, except Inventive Foams 5, 10, and 11, was made on a pilot line. The pilot line is a tandem extrusion line employing 2.5 inch and 3.5 inch single-screw extruders equipped with three ports in the primary extruder for injecting compressed fluids. The foaming temperature used in the pilot line was 107° C. and the foams were produced with a blow-up ratio of either 3.7 or 4.1. The blow-up ratio used to make each foam is identified in the footnotes to Tables 1 and 2 below. The extruded foam tube was stabilized over a mandrel, and then slit to form a sheet.

[0037] Unlike the other foams reported in Tables 1 and 2, Inventive Foams 5, 10 and 11 were made on a miniline. The miniline is a tandem extrusion line employing 1.25 inch and 1.5 inch single-screw extruders. Otherwise, the operating conditions of the miniline were the same as those of the pilot line described above.

[0038] The densities of the resulting foams were measured using ASTM D3575. The corrugation, if any, of the foam was determined as twice the amplitude of the sine wave that rides along the circumference of the extruded tube. The corrugation of the foams made on the miniline (Inventive Foams 5, 10, and 11) was not measured because of the small sample size. 1

TABLE 1 1,2,3
Blowing Agent (Composition in mol %) No. of
Sample No HFC- Density Gage Cells Corrugation
(Comp/Inv)4 Ethane n-C35 134a DME6 i-C47 Butanes8 i-C59 (lbs/ft3) (mils) (Per inch) (mils)
Comp 1 0 0 0 0 0 100 0 20 125 29 50
Comp 2 0 0 0 0 0 100 0 12 128 30 87
Comp 3 0 0 0 0 100 0 0 12 127 28 235
Comp 4 0 0 0 0 100 0 0 2.0 127 30 35
Inv 5 0 0 0 0 35 0 65 18 181 11 NA10
Inv 6 0 0 0 0 0 70 30 14 87 24 0
lnv 7 0 0 0 0 50 0 50 15 78 24 0
lnv 8 0 0 0 0 60 0 40 13 87 24 0
Inv 9 0 0 0 0 68 0 32 20 127 30 0
Inv 10 0 0 15 0 0 0 85 32 130 12 NA
Inv 11 0 0 30 0 0 0 70 35 130 15 NA
Comp 12 0 100 0 0 0 0 0 21 110 28 80
Comp 13 0 100 0 0 0 0 0 12 98 33 107
Inv 14 0 80 0 0 0 0 20 20 98 28 0
Inv 15 0 47 13 0 0 0 40 12 98 28 40
Inv 16 0 15 0 0 70 0 15 22 123 30 0
Inv 17 0 7 0 0 68 0 25 20 127 30 0
Inv 18 0 14 0 0 66 0 20 20 125 30 0
1Comparative Samples 1, 2, 12 and 13, and Inventive Samples 6-8 and 14-15 were made on the pilot line with a blow-up ratio of 4 1
2Comparative Samples 3 and 4, and Inventive Samples 9 and 16-18 were made on the pilot line with a blow-up ratio of 3 7
3Inventive Samples 5, 10 and 11 were made on the miniline with a blow-up ratio of 3
4“Comp” = Comparative Sample, “Inv” = Inventive Sample
5n-C3 = n-propane
6DME = Dimethyl ether
7i-C4 = Isobutane
8Butanes = A blend of 65 mol % isobutane and 35 mol % n-butane, generally known as A26
9i-C5 = Isopentane
10NA = Not Available

[0039] All of the above foams of Table 1 were dimensionally stable because their density did not deviate more than about 15% as compared to the foam density at the time of production. It was generally observed that the level of corrugation of the foam increased as the relative amount of isopentane was reduced or the relative amount of the co-blowing agent was increased.

[0040] Specifically, the corrugation of Comparative Foams 1-4 (a blowing agent of either isobutane or butanes) was greater than the corrugation of Inventive Foams 6-9 (a blowing agent of isopentane with either isobutane or butanes). Compare corrugation levels of 35-235 mils of Comparative Foams 1-4 to 0 mil of Inventive Foams 6-9. Similarly, the corrugation of Comparative Foams 12-13 (a blowing agent of n-propane) was greater than the corrugation of Inventive Foam 14 (a blowing agent of 80 mol % n-propane and 20 mol % isopentane). Compare corrugation levels of 80 and 107 mils of Comparative Foams 12 and 13, respectively, and 0 mil of Inventive Foam 14. It was surprising that the corrugation levels of Inventive Foams 6, 7-9 and 14 decreased significantly as compared to the corrugation levels of Comparative Foams 1-2, 3-4, and 12-13, respectively, by replacing a portion of the butanes, isobutane or n-propane with isopentane. 2

TABLE 21,2
Blowing Agent (Compostion in mol %) No of
Sample No. HFC Density Gage Cells Corrugation
(Comp/Inv)3 Ethane n-C34 134a DME5 i-C46 Butanes i-C58 (lbs/ft3) (mils) (Per inch) (mils)
Comp 19 10 0 0 0 90 0 0 20 102 28 100
Inv 20 10 0 0 0 65 0 25 20 96 28 80
Comp 21 25 0 0 0 75 0 0 20 102 30 75
Inv 22 25 0 0 0 45 0 30 21 94 30 60
Comp 23 40 0 0 0 60 0 0 20 96 28 60
Inv 24 40 0 0 0 30 0 30 21 95 28 60
Comp 25 0 0 15 0 85 0 0 12 87 40 73
Inv 26 0 0 15 0 70 0 15 19 123 30 0
Inv 27 0 0 13 0 0 57 30 13 108 26 42
Inv 28 0 0 0 15 70 0 15 12 127 30 167
Inv 29 0 0 0 15 70 0 15 19 118 30 105
Inv 30 0 0 0 7 68 0 25 20 125 30 0
Inv 31 0 0 0 14 57 0 29 20 122 29 0
Inv 32 0 0 0 13 66 0 21 21 128 29 0
1Comparative Sample 25 and Inventive Sample 27 were made on the pilot line wtth a blow up ratio of 4 1
2Comparative Samples 19, 21, and 23 and Inventive Samples 20, 22, 24, 26, and 28-32 were made on the pilot line with a blow up ratio of 3 7
3“Comp” = Comparative Sample, “Inv” = Inventive Sample
4n-C3 = n-propane
5DME = Dimethyl ether
6i-C4 = Isobutane
7Butanes = A blend of 65 mol % and 35 mol % n-butane, generally known as A26
8i-C5 = Isopentane

[0041] All of the above foams of Table 2 were dimensionally stable because their density did not deviate more than about 15% as compared to the density of the foam at the time of production. It was generally observed that the level of corrugation of the foam increased as the relative amount of isopentane was reduced or the relative amount of the volatile blowing agent was increased, as demonstrated in Inventive Foams 29 and 31. Specifically, the corrugation of Comparative Foam 19 (a blowing agent of 10 mol % ethane and 90 mol % isobutane) was greater than the corrugation of Inventive Foam 20 which replaced some of the isobutane with isopentane. Compare corrugation levels of 100 mils of Comparative Foam 19, and 80 mils of Inventive Foam 20. Similarly, the corrugation of Comparative Foam 21 (a blowing agent of 25 mol % ethane and 75 mol % isobutane) was slightly greater than the corrugation of Inventive Foam 22 in which some of the isobutane was replaced by isopentane. Compare 75 mils of Comparative Foam 21, and 60 mils of Inventive Foam. Additionally, the corrugation of Comparative Foam 25 (a blowing agent of isobutane and HFC-134a) was greater than the corrugation of Inventive Foam 26 which replaced some of the isobutane with isopentane. Compare corrugation levels of 73 mils of Comparative Foam 25, and 0 mil of Inventive Foam 26. It was surprising that the corrugation levels of Inventive Foams 20, 22 and 26 were less than the corrugation levels of Comparative Foams 19, 21, and 25, respectively, by replacing a portion of the isobutane with isopentane.

[0042] While the present invention has been described with reference to one or more particular embodiments, those skilled in the art will recognize that many changes may be made thereto without departing from the spirit and scope of the present invention. Each of these embodiments and obvious variations thereof is contemplated as falling within the spirit and scope of the claimed invention, which is set forth in the following claims.

What is polyolefin?
A polyolefin is a type of polymer with the general formulaₙ where R is an alkyl group. They are usually derived from a small set of simple olefins. Dominant in a commercial sense are polyethylene and polypropylene. More specialized polyolefins include polyisobutylene and polymethylpentene. They are all colorless or white oils or solids. Many copolymers are known, such as polybutene, which derives from a mixture of different butene isomers. The name of each polyolefin indicates the olefin from which it is prepared; for example, polyethylene is derived from ethylene, and polymethylpentene is derived from 4-methyl-1-pentene. Polyolefins are not olefins themselves because the double bond of each olefin monomer is opened in order to form the polymer. Monomers having more than one double bond such as butadiene and isoprene yield polymers that contain double bonds and are usually not considered polyolefins. Polyolefins are the foundations of many chemical industries.

How are polyolefins made?
The major processes for polyolefins’ production using Ziegler–Natta catalysts involve polymerization in the gas phase or in slurry, including bulk liquid monomer in the case of propylene. LLDPE is also produced via a solution process operating at temperatures in the range 130–250 °C. Polyolefins are produced using refined metallocene catalysts that have a constrained transition metal (generally a Group 4B metal such as Ti, Zr, or Hf) sandwiched between one or more cyclopentadienyl ring structures to form a sterically hindered polymerization site. Polyolefins, also called polyalkenes, are the largest class of commodity thermoplastics. They are polymers of simple alkenes such as ethylene, propylene, butenes, and pentenes, and copolymers thereof. The two most important polyolefins are polyethylene (PE) and polypropylene (PP).

What was the production of polyolefins in 2000?
Polyolefin fibre production by year 2000 was over 1.45 Mt (3.18 billion lb), while the polyester total was 1.76 Mt (3.87 billion lb).

How big is the global market for polyolefins?
Presently, the total world polyolefins capacity exceeds 120 million tons per year. Polyethylene (i.e., HDPE, LDPE and LLDPE) and polypropylene cover 60 % and 40 % of the total polyolefins production, respectively. The annual world-wide polyolefins market growth in the coming years is foreseen to be 4-6%.

What are the industrial applications of polyolefin fibres?
Polyolefin fibres, in particular slit films and monofilament, are used in industrial applications to manufacture ropes, cordages, agricultural nets, and FIBCs (flexible intermediate bulk containers).

Major Manufacturers of Polyolefin and Suppliers of Polyolefin in the World

  • LG Chem Ltd.
  • Constab Polyolefin Additives GmbH
  • Mc Tohcello (Malaysia) Sdn Bhd
  • Dow Europe GmbH
  • SK Chemicals
  • Deutsche Infineum GmbH
  • Bagla Polifilms Ltd.
  • Siam Synthetic Latex Co., Ltd.
  • Hoyer France
  • Lubrizol France

TOP 40 POLYOLEFIN PRODUCERS (POLYPROPYLENE, POLYETHYLENE & COPOLYMERS)

  • Alpek
  • Arkema
  • Borealis Group
  • Borouge
  • Braskem
  • Chevron-Phillips
  • CNPC
  • Dow
  • DuPont
  • Eastman
  • ENI
  • ExxonMobile
  • Formosa Plastics
  • Hanwha
  • Indorama
  • Ineos
  • KAP
  • Kayavlon Impex
  • LCY Chemical
  • LG Chem
  • Lyondellbasell
  • Mitsubishi
  • Mitsui Chemicals
  • Mol Group
  • Nova Chemicals
  • Petkim
  • Petroquim
  • Polyone
  • Quenos
  • Reliance
  • Repsol
  • Sabic
  • Sasol
  • Saudi Polymers
  • SCG Chemical
  • SEPC
  • Sibur
  • Sinopec
  • Sipchem
  • SK Global Chemical
  • Sumitomo
  • Tosoh
  • Total
  • TPC
  • UBE Industries
  • Westlake

Pentane, Hexane and Heptane Prices, Upstream, Downstream, Analytics & Forecasts
Junyuan Petroleum GroupDongying Liangxin Petrochemical Technology Development Limited Company | Address: No. 117, Guangqing Rd., Guangrao County, Dongying 257345 China.
Junyuan Petroleum Group is China’s largest manufacturer of blowing agents to the foam insulation markets. We have continued to grow with the development of next generation blowing agents, offering a variety of hydrocarbon products for the PIR, PUR and EPS markets, available in ISO tanks and drums. For more information, or for pricing please contact us: +86 178 1030 0898 Email: info@junyuanpetroleumgroup.com Web: www.junyuanpetroleumgroup.com.
China is the world’s largest buyer and drives prices in Asia and the global solvent trade. Our comprehensive news and pricing coverage of China and global solvent market is constantly updated by our raw material purchase, production and sales team of experts. Solvent markets can react to change quickly. It’s crucial for buyers, sellers and producers to stay alert and aware of what’s happening, both in their region and internationally. We help you stay abreast of change as it’s happening. We keep you informed of the current price and market position, so you can make the most of opportunities to trade or secure a deal.

n-Pentane Manufacturer

Industrial application of Pentane as a new welding and cutting fuel in China for the first time

The press conference on industrial application results of pentane as a new welding and cutting fuel was held at China Shipbuilding Group Guangzhou shipbuilding International Co., Ltd. This achievement is the first successful industrial application of pentane as a new welding and cutting fuel in China.

Pentane” usually refers to n-pentane, with the chemical formula of C5H12, which is the fifth member of alkanes. Pentane can be obtained from catalytic cracking and thermal decomposition of natural gas or petroleum, so pentane is also a by-product of oil refining process. In the past, it was mainly used to make low melting point organic solventsfoaming agents for plastic industry, artificial ice, etc. At the same time, pentane also has the characteristics of high combustion calorific value. After full combustion, pentane is safer and more environmentally friendly than conventional natural gas and other welding and cutting fuels. It is an ideal substitute for conventional fuels. Its high calorific value can also perfectly solve the problem of cutting thick ship plates and special steel plates in the shipbuilding industry.

It is understood that in order to promote the transformation and upgrading of product structure, Guangzhou shipbuilding international has undertaken the largest order for super large container ships with more than 16,000 containers in South China. The crack arrest steel applied to the deck, hatch enclosure and other key parts of the super large container ship has large thickness and high strength. It can achieve one-time forming by cutting with pentane with higher fuel value.

In three years, Guangzhou shipbuilding international and Shenghuo energy technology (Guangdong) Co., Ltd. have jointly developed a mobile blended light oil gasification system, which has solved the technical problems of stable gasification technology of liquid pentane welding and cutting fluid under normal temperature and pressure, pipeline transportation and pressure allocation of gasification equipment, and realized that pentane welding and cutting fluid can be supplied in the form of tank, and pentane welding and cutting fluid supply points can also be established through the gasification system, It provides a new green fuel choice for the industrial application of shipbuilding enterprises.

After application and inspection by a third-party testing agency, pentane welding and cutting fluid has obvious fuel saving effect, and the consumption of fuel and oxygen has been reduced by more than 30%; Cutting efficiency is close to or slightly higher than that of the existing natural gas; Compared with natural gas, it has obvious advantages in reducing slag hanging and preventing edge melting in medium and thick ship plate cutting.

A device for flame cutting and welding with pentane liquid as fuel comprises a jet suction cutting and welding torch, an evaporator and an oxygen cylinder. The oxygen joint of the jet suction cutting and welding torch is connected with a pressure regulating valve installed on the oxygen cylinder through a hose, and the gas joint of the jet suction cutting and welding torch is connected with the evaporator through a hose. The gas joint is equipped with a gas valve, and the evaporator is also equipped with a gas valve. The evaporator is equipped with an explosion-proof wire and a sieve plate, The screen plate is located at the bottom of the explosion-proof wire, and the lower part of the screen plate is equipped with a check valve and a silencing distributor. One end of the check valve is connected with the silencing distributor, and the other end is connected with the breathing valve located outside the evaporator through a pipe. A floating ball valve is also installed inside the evaporator, which is connected with the make-up valve outside the evaporator through a pipeline. After adopting the above device, compared with the gasoline cutting welder, the ignition performance is better and the stability is higher. The flame temperature of cutting and welding is up to 260 (RC ~ 280 (TC), and it is easy to adjust to carbonization flame, neutral flame and oxidation flame. When acetylene is burning, the carbonization flame has thick black smoke. The utility model does not have any black smoke, so the combustion ignition is easy, the flame is stable, and there is no backfire. The operation is simple. When cutting and welding is stopped, there is no smoke in the evaporator

It can stop working automatically because of negative pressure. The evaporator of the utility model has the advantages of simple structure, easy fabrication and low cost. Due to the negative pressure working condition, and an appropriate amount of explosion-proof wire is filled in the evaporator, the safety is very high. Practice has proved that the energy saving of the scheme of the utility model is more than 50% compared with that of acetylene gas and more than 25% compared with that of propane gas. Since the combustion temperature is about 400-500 ℃ higher than that of propane gas, steel plates or components with a thickness of less than 300mm can be cut smoothly. The steel plates cut by the combustion temperature are easier to process than the cutting edges cut by acetylene, and there is no slag at the bottom of the cutting edges, which is suitable for industrial needs. Figure 1 is the structural diagram of the device of the utility model. Specific implementation mode: the utility model is further described below in combination with the attached drawings. As shown in Figure L, this embodiment includes a jet suction cutting and welding torch L, an evaporator 2 and an oxygen cylinder 3. The oxygen joint of the jet suction cutting and welding torch 1 is connected with the pressure regulating valve 11 installed on the oxygen cylinder 3 through a hose. The gas joint of the jet suction cutting and welding torch 1 is connected with the evaporator 2 through a hose. The gas joint is equipped with a gas valve 12, and the evaporator 2 is also equipped with a gas valve 4. The evaporator is equipped with an explosion-proof wire 7 and a sieve plate 8, The screen plate 8 is located at the bottom of the explosion-proof wire 7. The lower part of the screen plate 8 is equipped with a check valve 9 and a silencing distributor 10. One end of the check valve 9 is connected with the silencing distributor 10, and the other end is connected with the breather valve 5 located outside the evaporator 2 through a pipe. A floating ball valve 13 is also installed inside the evaporator 2, and the floating ball valve 13 is connected with the make-up valve 6 outside the evaporator through a pipe. The specific working method of the utility model is as follows: when the regulating valve 11 on the oxygen cylinder 3 is opened and adjusted to the required pressure, the preheating valve 14 in the jet type cutting and welding torch L is opened, the jet suction device in the jet type cutting and welding torch 1 will generate negative pressure in the fuel channel, and then the gas valve 12 on the gas joint and the evaporator gas valve 4 are opened. The negative pressure will directly generate negative pressure in the evaporator 2 through the connecting pipe, and the breathing valve 5 is opened, The air flows upward through the breather valve 5, the check valve 9 and the silencing distributor 10, is evenly distributed through the sieve plate 8, and is violently mixed with the liquid amyl in the boiling state in the explosion-proof wire 7. The check valve 9 in the evaporator 2 is used to prevent the internal liquid from leaking out when the evaporator 2 is operating accidentally. Due to the low latent heat of vaporization and low boiling point of pentane, it can quickly absorb the heat of the external environment of the evaporator 2 made of metal and evaporate into a mixture of pentane gas and air with high concentration under the action of negative pressure. Under the action of negative pressure, pentane is continuously pumped into its injection and suction device by the injection and suction torch 1 and mixed with oxygen in proportion to form a fuel gas which is injected into the nozzle for combustion to achieve the purpose of cutting and welding. The pentane liquid can be filled by opening the make-up valve 6, which is sucked from the fuel storage tank to the evaporator 2. When the liquid level reaches a certain height, it will be automatically closed by the float valve 13. If ioo cutting torch is adopted for the above-mentioned jet suction cutting torch, the oxygen pressure of the cutting torch is 0.6MPa, the negative pressure of the gas interface is about 0.04 ~ 0.05Mpa, and the evaporation capacity of pentane liquid is 0.26 ~ 0.3l/h. The flame of the cutting torch can be easily adjusted to neutral flame, and the flame temperature is 2600 ° C ~ 2800 ° C, which can smoothly cut 100mm thick steel plate; If No. 8 jet suction welding torch is used for jet suction cutting torch 1, the required oxygen pressure is 03mpa, the negative pressure of gas interface is 0.035 ~ 0.04MPa, and the evaporation capacity of pentane liquid is 0.1 ~ 0.12l/h. The flame of the cutting torch can be easily adjusted to oxidation flame, neutral flame and carbonization flame, The flame temperature is 2600’c ~ 280 (TC, welding can be carried out smoothly. To sum up, the advantages of the utility model are: 1. The ignition performance of the utility model is better than that of the gasoline cutting welder, and the stability is high. The original propane injection cutting torch and welding torch do not need to be matched with the specially manufactured cutting torch or welding torch, which can save the enterprise’s equipment reinvestment investment and facilitate the purchase of vulnerable parts; 2. The safety is high, even if the cutting torch or welding torch is broken or accidentally damaged when working, it will not produce Danger caused by leakage of raw gas. Since the evaporator is filled with explosion-proof wire according to the standard, no explosion will occur; 3. The energy-saving effect is remarkable, and the production cost is greatly reduced; 5. As a by-product of petroleum industry and a class B green fuel, the waste gas after combustion is harmless to human body, which not only solves the problem of by-product of petroleum industry, but also ensures the safety and health of users; 6. The efficiency of cutting and welding has been improved. The cutting speed is slightly faster than that of acetylene. It is easy to operate and master. It is convenient to carry out construction outside. The utility model can not only be applied to the cutting of steel and the welding of metal, but also can be widely applied to glass fusion to replace the commonly used propane gas and natural gas, and has remarkable safety and energy-saving effects.

1. The device for flame cutting and welding with pentane liquid as fuel includes a jet suction cutting and welding torch (1), an evaporator (2) and an oxygen cylinder (3), which is characterized in that the oxygen joint of the jet suction cutting and welding torch (1) is connected with the pressure regulating valve (11) installed on the oxygen cylinder (3) through a hose, and the gas joint of the jet suction cutting and welding torch (1) is connected with the evaporator (2) through a hose, wherein the gas joint is provided with a gas valve (12), and the evaporator (2) is also provided with a gas valve (4), An explosion-proof wire (7) and a sieve plate (8) are installed inside the evaporator, the sieve plate (8) is located at the bottom of the explosion-proof wire (7), a check valve (9) and a silencing distributor (10) are installed below the sieve plate (8), one end of the check valve (9) is connected with the silencing distributor (10), and the other end is connected with the breather valve (5) located outside the evaporator (2) through a pipe.

Isopentane – a solvent for catalyst in polyethylene production

Isopentane has high economic value and can be used as an additive to improve the octane number of gasoline, a solvent for catalyst in polyethylene production and an important raw material for the production of isoprene and isopentanol.

In terms of isopentane production, North America, Western Europe and Japan are the main isopentane producing countries in the global market, with a large number of relevant production enterprises, such as Amoco, Eastman and piccolo in the United States, Mitsui petrochemicals, ryon and Fuji in Japan, and ICI and Hercules in Europe. As developed countries have the first mover advantage of technology, they are relatively mature in the production of C5 fine chemicals and occupy a leading position in the global C5 fine chemical market.

The main isopentane production enterprises in China are distributed in East China, Northeast China and Northwest China. Among them, isopentane production enterprises in East China are distributed in Dongying City, Shandong Province. The most important enterprise is Junyuan Petroleum Group and who is also the largest manufacturer of pentanes in China.

In 2022, the market scale of isopentane in China was 835 million yuan, with a year-on-year increase of 7.9%; In 2021, the market scale of isopentane in China was 666 million yuan, with a year-on-year increase of 8.9%; In 2020, the market scale of isopentane in China was 930 million yuan, with a year-on-year increase of 9.4%; In 2020, China’s isopentane market reached 906 million yuan, with a year-on-year increase of 9.1%; In the first half of 2021, China’s isopentane market reached 496 million yuan, a year-on-year increase of 9.4%.

The latest global polyethylene pipe Research Report: China has become the world’s largest polyethylene pipe market

According to the latest global polyethylene pipe research report released by Freedonia group, China’s total demand for polyethylene pipe in 2019 was 4.2 million tons, accounting for 33% of global demand and 59% of regional sales, which is the largest market in the world so far.

The research report points out that China’s agriculture, construction, manufacturing, oil and gas and public utilities have a large volume, and plastic pipelines are needed in these fields. In addition, China’s diversified processing and manufacturing industries, including chemical industry, food processing, primary metals, pulp, paper and textiles, also need plastic pipes.

The scale of China’s construction industry is almost four times that of the United States, and the sales volume of polyethylene pipes is about three times that of the United States. China’s infrastructure investment continues to make great progress, and the proportion of product sales in the population is almost twice the global average.

The report predicts that by 2024, the global demand for polyethylene pipes will increase at an annual rate of 3.7% to 15.3 million metric tons, which is due to the increasing use of polyethylene pipes in all markets. Among them, HDPE pipes will also maintain healthy growth because they are more popular than other materials in water treatment and sewer applications.

Demand will be driven by polyethylene’s versatility, easy processability, low cost, and recyclability; by new ethylene feedstocks; and by improved polymerization catalyst technologies.

World demand to rise 4.0% annually through 2018

Global demand for polyethylene resins will rise 4.0 percent per year to 99.6 million metric tons in 2018, valued at $164 billion. Gains will match overall world economic growth, fueled by an acceleration in consumer spending and manufacturing activity. Polyethylene will continue to be the most widely used plastic resin in the world, benefiting from its versatility, easy processability, low cost, and recyclability. The development of ethylene feedstocks from new sources such as shale gas, coal, and biobased materials will also give polyethylene a price advantage over other plastic resins. Moreover, continually improving polymerization catalyst technologies will enhance the performance, customization, and yield of polyethylene resins. Further increases will be limited, however, by the highly commoditized and mature position of polyethylene. Additionally, major polyethylene applications such as plastic bags have increasingly become subject to environmental regulations and bans.

Asia/Pacific region to remain largest, fastest growing market

The Asia/Pacific region will continue to be the largest and fastest growing polyethylene market through 2018, fueled by strong growth in China, which alone accounted for nearly one-quarter of global demand in 2013. India and Vietnam will also be among the world’s most rapidly expanding markets. However, advances in most emerging Asian countries will rise at a slower pace than during the 2008-2013 period. On the other hand, North America will see a significant improvement in polyethylene demand, while the markets in Western Europe and Japan will rebound from recent declines.

LLDPE to gain market share over LDPE

View Post

HDPE is the most widely used of the three polyethylene resins, accounting for just under half of total demand in 2013. Above average growth is expected for HDPE through 2018, driven by its rising use in construction products such as pipe and the increasing popularity of blow-molded HDPE containers in emerging market countries. LLDPE will continue to gain market share over LDPE going forward, as LLDPE is the primary beneficiary of metallocene catalyst technology, which improves resin performance. Packaging will remain the largest outlet for polyethylene, accounting for a majority of demand in 2018. The resin’s favorable sealing, stiffness, moisture barrier, and clarity properties make it an indispensible material in the packaging industry. Film accounts for about half of global polyethylene demand and tends to comprise a particularly large portion of the market in developing countries.

Junyuan Petroleum Group, one of the largest pentane production bases in China.

Polyethylene is the most popular plastic substance in the world
Nowadaysplants use ethylene to create these products
During its gas phaseliquid Isopentane will be added to the gas stream

Pentane: What Is It and How Do We Use It?

Pentane is an organic substance. It can be used to describe any 3 structural isomers or their combination. But, according to IUPAC, this phrase is exclusive to the n-pentane isomer. We also differentiate neopentane or dimethylpropane as well as isopentane or methylbutane.

​Pentanes are commonly used for fuels, but they can also be utilized as solvents in labs. The substance carries similar traits as hexanes and butanes.

Pentanes are generally used for insulation products. However, you can utilize them in so many different ways. Whether you’re relying on n-pentane, cyclopentane, or iso-pentane, each one of the chemical compounds can serve as the main ingredient for various products. In this article, we will discuss pentane, in general, as well as its potential application.

How do we get pentanes?

Pentanes are saturated hydrocarbons. Each one of them has five carbon atoms. We get n-pentane and iso-pentane naturally from crude oil.

They are made during gas production as natural byproducts. On the other hand, cyclopentane is found in naphtha or crude petrol. It is a molecule in the shape of a ring, and it is very popular across several industries. Oil refineries create cyclopentane through the cracking process.

Naphtha has variable quantities of pentanes. It all depends on its origin, the acquiring process, and the construction of the refinery.

They are the first hydrocarbons to become liquids at room temperature. Out of these substances, iso-pentane has the lowest boiling point.

The substance will boil at 29 degrees Celsius compared to n-pentane, which boils at 35 degrees, and cyclopentane that has a boiling point of 49 degrees Celsius. Due to these differences between pentanes’ boiling points, you are able to separate the substances.

What are the main differences between pentane types?

As you can presume, there are some major differences between these substances aside from their boiling points. Companies use them in numerous ways, and they have some major advantages over other crude oil derivatives. What’s even better is that you can mix these chemicals. This is how we get pentane blends, each with its unique set of traits.
How do you use n-pentane?

Generally speaking, n-pentane and iso-pentane are somewhat similar substances. They react in a similar fashion when you use them for different products. Usually, n-pentane is utilized as a refrigeration or air conditioning substance, effectively replacing things such as fluorinated hydrocarbons and ammonia. Here are some of its potential uses:

Refrigerant R601
Very non-polar solvent
Process medium for polyethylene

How do you use iso-pentane?
​A great thing about iso-pentane is that it almost cannot be dissolved in water. Furthermore, it has very soluble when used with other organic solvents like ethers, esters, paraffins, chlorinated hydrocarbons, aromatics, etc. Also, the substance has unlimited miscibility. This gives iso-pentane high versatility. Companies try to utilize their characteristics as much as possible for various products.

Non-polar solvent with high volatility
Personal care products like shower gels
It can be used as a process medium for polypropylene and polyethylene
Working medium in geothermal plants
How do you use cyclopentane?
While the previous two substances may have certain similarities, cyclopentane is completely different from both of them. It is not that popular as a solvent, nor is it used as an ingredient for other chemicals. But, it is a very common substance for insulation products.

It can be used for solvents and insulation board
Cyclopentane is great for refrigeration and refrigeration logistics
Blowing agent for polyurethane foams
Fine chemicals
Different ways pentane is used across various industries
Pentanes are very flexible products. Each one of these subtypes has a wide range of applications. Here is how different industries rely on them for their day-to-day business:

Geothermal plants
Pentanes are very important for renewable energy creation. Geothermal plants use iso-pentane as a medium during their crucial heating processes. Plants extract heat from the ground and use it for heating energy; iso-pentane is there to facilitate the process.

Cooling substance
Companies are also using pentanes as cooling agents. Whether we’re talking about iso-pentane or n-pentane, both of these chemical compounds can be utilized as cooling substances for air conditioning appliances and refrigeration systems. They are a much better alternative to fluorinated hydrocarbons and ammonia.

Cosmetics and care products
Pentanes are also very famous for their cosmetic industry application. They are a crucial ingredient for products like shower gels and shaving creams. Furthermore, these substances are the main reasons why personal care items have their specific, creamy texture.

Companies use pentanes for the production of polypropylene and polyethylene
Among others, companies use these substances to create polyethylene and polypropylene. Polyethylene is the most popular plastic substance in the world. Nowadays, plants use ethylene to create these products. During its gas phase, liquid iso-pentane will be added to the gas stream. The substance works as a specific cooler. Once it is condensed, you can reuse it. We make polypropylene in a similar way as polyethylene, and once again, iso-pentane is added during the gas phase to facilitate the process.

Insulation materials
Pentanes are commonly used for the creation of polystyrene and polyurethane insulation boards. Companies use them as blowing agents during polyisocyanurate and polyurethane formulation. Insulation materials are very important for the food industry and household appliances. You can use them for freezers, refrigerators, and cold storage. They are also crucial for constructions and various others industries. For example, you can use them for building, pipes, and other materials.

Cyclopentane is great for long-lasting insulation. It is especially good for smaller surfaces and spaces due to its ability to stay within polyurethane and polyisocyanurate foam for a long time, even after foaming. The pentane can be used for cooling devices and thin insulation panels.

Packaging material
Among others, pentanes are important for the creation of packaging material. Once again, pentane is utilized as a blowing agent. We use it to create extruded polystyrene, which is later on utilized for packaging chips.

Pentanes have numerous applications. As long as you use them with care, you should be able to create some incredible materials that can be utilized in various industries.

Blowing Agents

The blowing agent used since EPS Foam was first introduced in 1952 by BASF is Pentane gas which, does not contain any chlorine atoms as CFC’s. PSP Foam in the beginning used CFC’s as blowing agent. In the past two decades CFC’s are gradually phased out from plastics and refrigerator industries.

It is contemplated that various blowing agents may be used in the present invention, including physical blowing agents such as hydrocarbons. The preferred physical blowing agents for this invention are organic chemical compounds that have boiling points less than about 37° C. These organic compounds include, but are not limited to, fully hydrogenated hydrocarbons and partially fluorinated hydrocarbons that are considered to be flammable. Flammable as defined herein generally includes those materials having flashpoints less than about 37.8° C.

Pentane, pentanes, pentane blends, isopentane and normal pentane

The preferred fully hydrogenated hydrocarbon blowing agents include the initial members of the alkane series of hydrocarbons that contain up to five carbon atoms and which are not regulated by governmental agencies as being specifically toxic to human or plant life under normal exposure. These fully hydrogenated blowing agents include methane, ethane, propane, n-butane, isobutane, n-pentane, isopentane and blends thereof.

The most preferred fully hydrogenated hydrocarbon blowing agents are Cto Ccompounds and blends thereof An example of a preferred blend is a blend of approximately 67 weight percent n-butane and approximately 33 weight percent isobutane, which is commonly referred to in the industry as an A21 butane blend. This blend may be added at a rate of from about 1 to about 20 weight percent of the total extruder flow rate, and preferably added at a rate of from about 3 to about 20 weight percent of the total extruder flow rate.

It is contemplated that auxiliary blowing agents may be used in the present invention in amounts less than about 40 weight percent of the total blowing agent. The preferred auxiliary blowing agent are partially fluorinated hydrocarbon blowing agents that have molecules containing up to three carbon atoms without any other halogen atoms, and those considered flammable. For example, this includes 1,1-difluoroethane (HFC-152a), and 1,1,1-trifluoroethane (HFC-143a), with the most preferred auxiliary blowing agent being HFC-152a. It is also contemplated that 1-1-chlorofluoroethane (HFC-142b) and 1-1-dichloro-2-fluoroethane (HFC-141b) may be added as auxiliary blowing agents for non-regulated insulation applications.

In addition, water may optionally be added at a low concentration level as an auxiliary blowing agent. The water quality should be at least adequate for human consumption. Water containing a high level of dissolved ions may cause excessive nucleation, so therefore deionized water is preferred. The preferred rate for water addition is from about 0.05 to about 0.5 parts water to 100 parts of the polymeric composition (0.05 to 0.5 phr). The most preferred rate of adding water is from about 0.2 to about 0.3 phr.

What is EPS

Polystyrene is one of the most widely used kinds of plastic. It is a polymer made from the monomer styrene, a liquid hydrocarbon that is commercially manufactured from petroleum by the chemical industry. Polystyrene is a thermoplastic substance, it melts if heated and becomes solid again when cool.

Polystyrene is most commonly found in three forms. Rigid Polystyrene (PS), Expanded Polystyrene (EPS) and Extruded Polystyrene (XPS).

Rigid polystyrene has many applications including disposable cutlery, cd cases, video/casette casings, components for plastic model toys as well as some margarine and yoghurt containers.  Extruded polystyrene foam has good insulating properties making it important as a non-structural construction material.  XPS is sold under the trademark Styrofoam by Dow Chemical, however this term is often used informally for other foamed polystyrene products.

How to produce foam?

Expandable Polystyrene / EPS:

This is PS Foam that uses Pentane gas (C5H12) as the blowing agent. During the material production process called “Polymerisation” the polystyrene resin granules impregnated with the blowing agent. EPS production processes begin in the pre-expansion process where the EPS bead will expand by the heat of steam usually 50 times in volume. The next step in the process is moulding process where expanded foam bead will be heated again with steam then they expand further until they fuse together, forming as foam products.

There are mainly 2 types of EPS moulding machines;

  • Shape moulding machine that produce various shapes of foam products according to the molds such as icebox, helmet and packaging foam.
  • Block moulding machine that produce block foam and sheet foam Expanded EPS foam bead contains 98% air per volume, only 2% is plastic. This make EPS foam very light weight, has low thermal conductivity because air is the best insulation, high compressive strength and excellent shock absorption. These properties make EPS to be ideal material for packaging and construction.

Polystyrene Paper (PSP):

This is a PS Foam which is produced by extruding process as another plastic. Production process start when put polystyrene resin pellets into the extruder that heated by electric. Foaming process occur at the end of extruder where the blowing agent, butane (C4H10) gas react with the melt plastic then become foam. The melted polystyrene foam is then extended as sheet then rolled as paper roll, that is why it is commonly known as “Polystyrene Paper”. The polystyrene foam sheet or polystyrene paper can be produced as many shape according to the mould by thermal forming process such as food tray, cups, bow, and food box.

Both EPS and PSP contain 95 -98 % air another 2-5% is polystyrene which is pure hydrocarbon. CFC’s is Chlorofluorocarbons which is totally different in its chemical structure from polystyrene. CFC’s has very low blowing point and uneasy to be maintained in EPS beads. Therefore, EPS Foam never use CFC’s at any stage of its production. The blowing agent used since EPS Foam was first introduced in 1952 by BASF  is Pentane gas which, does not contain any chlorine atoms as CFC’s. PSP Foam in the beginning used CFC’s as blowing agent. In the past two decades CFC’s are gradually phased out from plastics and refrigerator industries. PSP moulders in Thailand already use Butane (C4H10) as the blowing agent since the last 15 years. Butane gas is the gas that we use at home for cooking. The blowing agents that use in producing PS Foam are Pentane and Butane, which are pure hydrocarbon as polystyrene. They belong to the same chemical family, the paraffin series as methane, ethane, and propane gas.

How to manage the EPS foam waste

Apart from recycling by melting and compacting, there are many ways to manage the EPS waste as the followings:

  • Crush in to small particle and mix with soil. Foam waste will improve ventilation in the soil, organic substances in the soil will become easier the humus.
  • Mixing the crushed bead with cement to reduce the weight and increase insulation properties.
  • Combustion at 1000 C with sufficient air supplies in to generate heat. Burning EPS require no any additional fuel, in fact EPS can replace the fuel normally required for combustion, l kg of EPS saves 1 kg = 1.2 – 1.4 Litre of fuel oil.

The Recycling of PS:

Since both EPS and PSP Foam are made of Polystyrene, which is thermoplastic, so that it will become again a polystyrene plastic when recycled. AMEPS members recycle both EPS and PSP Foam by first crushing into small particle then melting or compacting it. Melting can be done by heated roller, disk or screw extruders, where the regrind scraps is heated usually by electrical power for some time above the melting temperature. Compacting can be done by rotary compactors where pressure and frictional force create heat below melting temperature to soften the regrind scraps for only few seconds. This method also called “agglomeration”.PS pallet from recycled foam will be produced in various kinds of plastic products e.g. video and tape cassette and ruler. The other way to reuse EPS Foam is to mix the regrind beads with the new expanded bead for re-production in moulding process.

Daily Price Changes

2021/02/02. USD TO CNY TODAY.
Actual USD to CNY exchange rate equal to 6.4590 Chinese Yuans per 1 Dollar. Today's range: 6.4550-6.4610. Previous day close: 6.4570. Change for today +0.0020, +0.03%.
Compared with the previous day, the price of n-Hexane increased by 1.18%. The production of n-Pentane, Isopentane, n-Hexane and n-Heptane is stable. Our company has a large quantity of n-Pentane, 95%, n-Hexane, 60% ~99% and n-Heptane, 99% in stock. You are very welcome to call or email for sales inquiry. Email: info@junyuanpetroleumgroup.com WhatsApp: +86 178 1030 0898
#Pentane #pentanes #hexane #hexanes #heptane #heptanes #n-Pentane#normal pentane #Isopentane #n-Hexane #normal hexane #Isohexane #n-Heptane #normal heptane #blowing agent #blowing agents #foaming agent #foaming agents

Pentanes

PRODUCT DESCRIPTIONPurity Percent
n-Pentane99%, 95% 
Isopentane  99%, 96%
n- Pentane / Isopentane Blend20-80%, 30-70%
Pentane Products List
n-Pentane and applications

n-Pentane, 99%, n-Pentane, 95%
CAS NO 109-66-0
Applications: Blowing Agents, Plastics Industry, Geothermal Energy, Personal Care Products, Gasoline

For sales inquiries and questions please email us at: info@junyuanpetroleumgroup.com or WhatsApp us at: +86 178 1030 0898

Isopentane #i-Pentane #Pentanes #Pentane #Iso-Pentane #geothermal #powerplant #expansion #geothermalenergy #energystorage #renewableenergy #laboratorysolvents #solvents #Pentane Blends # Blowing Agents #Plastics Industry #Geothermal Energy #Personal Care Products #Gasoline

Blowing Agent

A blowing agent is a substance which is capable of producing a cellular structure via a foaming process in a variety of materials that undergo hardening or phase transition, such as polymers, plastics, and metals. They are typically applied when the blown material is in a liquid stage. The cellular structure in a matrix reduces density, increasing thermal and acoustic insulation, while increasing relative stiffness of the original polymer.

Blowing agents are additives used in the manufacture of foamed plastics, which have the advantage of lightness, contribute to material and cost savings, and are distinguished by the fact that they are thermally insulatingBlowing agents usually create fine and regular cellular structures during polymer processing.

Blowing agent plays a fundamental role in the production of polystyrene (PS), polyurethane (PUand polyisocyanurate (PIRinsulations foamA small quantity of blowing agent indirectly provides important performance characteristics to these foams as great thermal insulation properties.

The global warming potential (GWP) of the blowing agents used to manufacture insulation products like polyiso insulation can be an important consideration when assessing each product’s environmental impacts. Blowing agents function to increase the final thermal resistance or R-value of foam insulation, and also help to facilitate the manufacturing or foaming process.  

Manufacturers of laminated insulation products in North America use #pentane or #pentane #blends in their production processes. Pentane is a hydrocarbon with zero ozone depletion potential (ODP) and low-GWP. Manufacturers have utilized pentane technologies in product formulations for over 20 years.

n-Pentane, isopentane and pentane blends storage tanks at our manufactuiring plant

Pentane has a GWP value of less than 10, which means that insulation products produced and sold in North America comply with climate regulations that limit the manufacture or installation of products produced with higher-GWP substances (including products manufactured with hydrofluorocarbons (HFCs) or blends thereof). Therefore, architects and contractors can continue to specify insulation products manufactured by PIMA members with confidence in both the industry’s performance and environmental scorecard.

Blowing agents can allow the polymer processor to achieve weight reduction and use less raw materials by introducing a finely controlled cell structure within the polymerWith the endothermic blowing agentsas part of their functionalitythey will absorb heat energy from their surroundings.

Foam blowing agents encompass a wide variety of applications including refrigeratorsbuildingsautomobilesfurniturepackagingand many moreThe blowing agent is used to create a cellular structure from liquid plastic resinand in the case of foam used for insulation it functions as an insulating component of the foam.

When it comes to blowing agents, a controlled foam structure makes your production process go a lot smoother

Not only do blowing agents expand up to 60 times in volume, they also provide:

  • highly controlled foaming
  • closed, uniform cell structure
  • guards against water penetration
  • create internal pressure to combat shrinkage.

Blowing agent plays a fundamental role in the production of polystyrene (PS), polyurethane (PUand polyisocyanurate (PIRinsulations foamA small quantity of blowing agent indirectly provides important performance characteristics to these foams as great thermal insulation properties.

Blowing agents can allow the polymer processor to achieve weight reduction and use less raw materials by introducing a finely controlled cell structure within the polymerWith the endothermic blowing agentsas part of their functionalitythey will absorb heat energy from their surroundings.

What is EPS

Polystyrene is one of the most widely used kinds of plastic. It is a polymer made from the monomer styrene, a liquid hydrocarbon that is commercially manufactured from petroleum by the chemical industry. Polystyrene is a thermoplastic substance, it melts if heated and becomes solid again when cool.

Polystyrene is most commonly found in three forms. Rigid Polystyrene (PS), Expanded Polystyrene (EPS) and Extruded Polystyrene (XPS).

Rigid polystyrene has many applications including disposable cutlery, cd cases, video/casette casings, components for plastic model toys as well as some margarine and yoghurt containers.  Extruded polystyrene foam has good insulating properties making it important as a non-structural construction material.  XPS is sold under the trademark Styrofoam by Dow Chemical, however this term is often used informally for other foamed polystyrene products.

How to produce foam?

Expandable Polystyrene / EPS:

This is PS Foam that uses Pentane gas (C5H12) as the blowing agent. During the material production process called “Polymerisation” the polystyrene resin granules impregnated with the blowing agent. EPS production processes begin in the pre-expansion process where the EPS bead will expand by the heat of steam usually 50 times in volume. The next step in the process is moulding process where expanded foam bead will be heated again with steam then they expand further until they fuse together, forming as foam products.

Expandable Polystyrene / EPS:

There are mainly 2 types of EPS moulding machines;

  • Shape moulding machine that produce various shapes of foam products according to the molds such as icebox, helmet and packaging foam.
  • Block moulding machine that produce block foam and sheet foam Expanded EPS foam bead contains 98% air per volume, only 2% is plastic. This make EPS foam very light weight, has low thermal conductivity because air is the best insulation, high compressive strength and excellent shock absorption. These properties make EPS to be ideal material for packaging and construction.

Polystyrene Paper (PSP):

This is a PS Foam which is produced by extruding process as another plastic. Production process start when put polystyrene resin pellets into the extruder that heated by electric. Foaming process occur at the end of extruder where the blowing agent, butane (C4H10) gas react with the melt plastic then become foam. The melted polystyrene foam is then extended as sheet then rolled as paper roll, that is why it is commonly known as “Polystyrene Paper”. The polystyrene foam sheet or polystyrene paper can be produced as many shape according to the mould by thermal forming process such as food tray, cups, bow, and food box.

There’s no any CFC’s in PS foam

Both EPS and PSP contain 95 -98 % air another 2-5% is polystyrene which is pure hydrocarbon. CFC’s is Chlorofluorocarbons which is totally different in its chemical structure from polystyrene. CFC’s has very low blowing point and uneasy to be maintained in EPS beads. Therefore, EPS Foam never use CFC’s at any stage of its production. The blowing agent used since EPS Foam was first introduced in 1952 by BASF  is Pentane gas which, does not contain any chlorine atoms as CFC’s. PSP Foam in the beginning used CFC’s as blowing agent. In the past two decades CFC’s are gradually phased out from plastics and refrigerator industries. PSP moulders in Thailand already use Butane (C4H10) as the blowing agent since the last 15 years. Butane gas is the gas that we use at home for cooking. The blowing agents that use in producing PS Foam are Pentane and Butane, which are pure hydrocarbon as polystyrene. They belong to the same chemical family, the paraffin series as methane, ethane, and propane gas.

How to manage the EPS foam waste

Apart from recycling by melting and compacting, there are many ways to manage the EPS waste as the followings:

  • Crush in to small particle and mix with soil. Foam waste will improve ventilation in the soil, organic substances in the soil will become easier the humus.
  • Mixing the crushed bead with cement to reduce the weight and increase insulation properties.
  • Combustion at 1000 C with sufficient air supplies in to generate heat. Burning EPS require no any additional fuel, in fact EPS can replace the fuel normally required for combustion, l kg of EPS saves 1 kg = 1.2 – 1.4 Litre of fuel oil.

The Recycling of PS:

Since both EPS and PSP Foam are made of Polystyrene, which is thermoplastic, so that it will become again a polystyrene plastic when recycled. AMEPS members recycle both EPS and PSP Foam by first crushing into small particle then melting or compacting it. Melting can be done by heated roller, disk or screw extruders, where the regrind scraps is heated usually by electrical power for some time above the melting temperature. Compacting can be done by rotary compactors where pressure and frictional force create heat below melting temperature to soften the regrind scraps for only few seconds. This method also called “agglomeration”.PS pallet from recycled foam will be produced in various kinds of plastic products e.g. video and tape cassette and ruler. The other way to reuse EPS Foam is to mix the regrind beads with the new expanded bead for re-production in moulding process.

A gravity-dominated process for recovering bitumen

An integrated thermal recovery process using a solvent of a pentane or hexane or both as an additive to, or sole component of, a gravity-dominated process for recovering bitumen or heavy oil from a reservoir. A pentane-hexane specific solvent fraction is extracted at surface from a diluent stream. That pentane-hexane solvent fraction is then injected into the reservoir as part of a gravity-dominated recovery process within the reservoir, and when that solvent fraction is subsequently produced as part of the oil or bitumen blend, it is allowed to remain within the blend to enhance the subsequent blend treating and transportation steps. Meanwhile, the remainder of the diluent from which the solvent stream had been extracted is utilized at surface as a blending stream to serve as an aid in treating of produced fluids and also to serve as a means of rendering the bitumen or heavy oil stream pipelineable.

An integrated thermal recovery process using a solvent of a pentane or hexane or both as an additive to, or sole component of, a gravity-dominated process for recovering bitumen or heavy oil from a reservoir. A pentane-hexane specific solvent fraction is extracted at surface from a diluent stream.
Author: Subodh Gupta, Simon D. Gittins, Mark A. Bilozir
Cited by: 22
Publish Year: 2012

Is pentane a polar solvent?Pentane is a straight chain alkane consisting of 5 carbon atoms. It has a role as a non-polar solvent and a refrigerant. It is a volatile organic compound and an alkane.

Is pentane an alkane or alcohol?Pentane is found in alcoholic beverages. Pentane is present in hop oil. Pentane is any or one of the organic compounds with the formula C5H12. This alkane is a component of some fuels and is employed as a specialty solvent in the laboratory. Its properties are very similar to those of butane and hexane.

Is pentane an organic compound?It is a volatile organic compound and an alkane. Pentane is found in alcoholic beverages. Pentane is present in hop oil. Pentane is any or one of the organic compounds with the formula C5H12. This alkane is a component of some fuels and is employed as a specialty solvent in the laboratory.

Request a Quote

Request a Quote

for Pentanes, Hexanes, Heptanes, Butanes and more

I will be back soon

Request a Quote
If you would like to receive a quote to purchase a product or you would like more information, please message us on WhatsApp.