Tag pentane

The company is holding a video conference,Dongying Liangxin Petrochemical Technology Development Limited Company

The EMD Held a Quarterly Video Conference on Safety Management

The emergency management department held a quarterly Video Conference on centralized management of safety risks of hazardous chemicals

On July 29, the emergency management department held a quarterly video promotion meeting on the centralized management of safety risks of hazardous chemicals nationwide to report progress, analyze problems, exchange practices, strengthen measures, promote the implementation of key tasks, effectively prevent and control major safety risks, and create a stable safety environment for the success of the 20th CPC National Congress. Sunguangyu, member of the Party committee and vice minister of the emergency management department, attended the meeting and delivered a speech. Qichunxiao, the general manager of the group, and Qiao Huijie, the deputy general manager and director of safety and environmental protection, attended the video conference at the venue of the agricultural high-tech division in the Yellow River Delta.

However, from the mid-term evaluation results of centralized governance, there are still problems of uneven progress between regions, lagging progress of some special projects and low quality.

The meeting emphasized that we should have a clear understanding of the severe situation faced by the current safe production of hazardous chemicals and strengthen the sense of mission and urgency of doing a good job in centralized management. We should adhere to the problem orientation, anchor the goal of centralized governance, and make every effort to overcome difficulties. We should quickly wake up, be nervous, and take action. If there is a deviation in the direction of work, we should correct it in time. If the progress of work lags behind, we should pay close attention to make-up lessons, and accelerate the completion.

The meeting required that we should adhere to both the symptoms and root causes, accurately grasp the relationship between major risk prevention and control and centralized governance, promote major risk prevention and control and centralized governance as a whole, and prevent “two skins”. We should organically integrate centralized management and annual key work, integrate the requirements of centralized management tasks and measures into the major inspection of production safety and special safety actions, strengthen supervision and inspection and open and secret visits, do a good job in production safety in summer and flood seasons, strictly implement the main responsibility of enterprises, and resolutely prevent and contain major accidents and accidents with great impact.

At the meeting, Beijing, Liaoning, Zhejiang, Ningxia and other four provinces and CNPC made exchange speeches respectively, and the heads of relevant departments and bureaus, institutions and industry associations of the emergency management department and the main heads of relevant central enterprise safety management departments attended the meeting at the main venue; The heads of the emergency management departments at the provincial, municipal and county levels, as well as the relevant chemical parks and the main heads of enterprises attended the meeting at the branch venue.

Dongying Liangxin Petrochemical Technology Development Limited Company

Normal Pentane, Isopentane and Cyclopentane Blends

Pentane

We offer a large range of flammable and non-flammable blowing agents for Polyurethane (PU), Polystyrene (EPS, XPS) and Polyethelyne (PE) foams, which include liquids and blends.

Blowing Agent of Expendable Polystyrene, Polyurethane

BLENDS

With know how in formulating, handling and packaging blowing agents, we can also offer special blends such as :

n-Pentane/Isopentane
Cyclopentane/Isopentane
Cyclopentane/n-Pentane
Cyclopentane/Isopentane/n-Pentane

Blowing Agents/Pentane Blends

ISOPENTANE 70%, CYCLOPENTANE 30%
ISOPENANE 50%, CYCLOPENANE 50%
ISOPENTANE 30%, CYCLOPENTANE 70%
ISOPENANE 25%, CYCLOPENANE 75%
ISOPENTANE 20%, CYCLOPENTANE 80%
ISOPENANE 15%, CYCLOPENIANE 85%
ISOPENANE 10%, CYCLOPENANE 90%

Blowing Agents/Pentane Blends

ISOPENTANE 15%, NORMAL PENTANE 85%
ISOPENTANE 20%, NORMAL PENTANE 80%
ISOPENTANE 25%, NORMAL PENTANE 75%
ISOPENANE 30%, NORMAL PENANE 70%
ISOPENANE 40%, NORMALPENANE 60%
ISOPENANE 45%, NORMALPENANE 65%
ISOPENANE 50%, NORMALPENIANE 50%
ISOPENTANE 70%, NORMAL PENTANE 30%
ISOPENANE 75%, NORMAL PENANE 25%

PACKAGING

We offer a range of packaging from a bulk of 20 tonnes to a 1 litre sample.

BULK – up to 20 tonnes
CONTAINERS – 20″ GP container, 40″ GP container
DRUMS – 200 litres, 125KG, up to 150 KG
ISO Tanks – 14.5 MT, up to 17 MT
SAMPLE – 1 litre

Cyclopentane as a foaming agent and solvent used for insulation panels

Foaming technology of Cyclopentane polyurethane rigid PU foam

Cyclopentane, as a foaming agent and solvent, has brought many conveniences to our life. Cyclopentane can replace freon and be widely used in refrigerators, insulation materials for freezers and foaming agents for hard PU foam. It can also be used as a solvent for solution polymerization such as polyisoprene rubber and a solvent for cellulose ether. Cyclopentane, as a blowing agent in Polyurethane (PU) foams, is the most important raw material for high-performance insulation in refrigerators. It allows for a high energy efficiency, CO2 reduction and cost savings. At the same time, Cyclopentanes enable a particularly thin insulation for maximum volume utilisation.

Foaming technology is common in every refrigerator, and foaming materials are also very important, which are reflected in heat preservation, noise reduction, more constant box temperature and faster freezing time. There are only four kinds of foaming material technologies used in a refrigerator. The first is monochloroethane, which is the most primitive foaming process. Up to now, it can also be said to be a relatively backward foaming process. The thermal insulation performance of this foaming material is actually good. But there are two obvious shortcomings. One pollutes the atmosphere, the other is easy to crack. Therefore, internationally, the Montreal agreement clearly requires developed countries to completely ban it in 2010. Developing countries are allowed to use it until 2040. Our country has made it clear that the total phase out will be completed ten years ahead of schedule by 2030.

The second kind of Cyclopentane foaming, as a second-generation foaming technology, is used to replace monofluorodichloroethane, which is very good in environmental protection and is not easy to crack.

The third is 245fa mixed foaming agent, which initially aims to solve the problem of the lack of thermal insulation performance of cyclopentane foaming technology, and makes a balance between thermal insulation performance and environmental protection, which belongs to a transitional stage.

The fourth is HFO foaming agent, which is excellent in thermal insulation and environmental protection, and is not easy to crack. It is a luxury to use in refrigerators.

Cyclopentane is commonly used in household appliance foaming materials, and the GWP value of cyclopentane is very small. Halogen free, short life in the atmosphere, easy to decompose safely, and will not destroy the ozone layer. The thermal conductivity of gas phase is small. It can meet the technical requirements of most household appliances for thermal insulation performance.

Cyclopentane is flammable and explosive, with an explosion limit of (1.4-8.0)%. It is listed as a class a class B fire-fighting object in fire fighting. Cyclopentane is also a volatile organic compound, with a volatile amount of 8.5kg/m per hour, with a faint pungent smell. Therefore, there are strict requirements for production equipment, workshops, transportation and storage, as well as higher requirements for the quality and safety of enterprise employees.

Cyclopentane itself has low toxicity and deasterification function. Once it contacts the skin or splashes into the eyes, it should be immediately cleaned with clean water. Once cyclopentane leaks, it should be diluted and dispersed with inert gas nitrogen immediately. The above is the knowledge sharing on cyclopentane foaming process sorted out by Junyuan Petroleum Group and I hope it will be helpful to you!

Pentane Formula, Properties, Uses and Isomers

Pentane – Thermophysical Properties

Chemical, physical and thermal properties of pentane, also called n-pentane. Phase diagram included.

Physical Properties The boiling points of the pentane isomers range from about 9 to 36 °C. As is the case for other alkanes, the more branched isomers tend to have lower boiling points.

Usually, n-Pentane is used as a refrigeration or air conditioning substance, effectively replacing substances such as fluorinated hydrocarbons and ammonia. Here are some of its potential uses: refrigerant R601, non-polar solvent polyethylene process medium, how to use Isopentane? Isopentane is widely used. Firstly, it is an important refrigerant, which is used as the mixed refrigerant component of condensation inducer and LNG in LLDPE unit of olefin plant; Used for blending octane number of oil products;

Usage: isopentane is widely used. First, it is an important refrigerant of olefin unit, condensation inducer of LLDPE unit and LNG mixed refrigerant components; Used for blending oil octane number; It is widely used in organic synthesis reactions and the separation and purification of organic compounds; Secondly, isopentane dehydrogenation can be made of isoprene and isoprene, and isopentanol is obtained by chlorination and hydrolysis. It is also an important raw material for organic synthesis. Isopentane can also be used with n-pentane in EPS (expandable polystyrene) blowing agent, or with cyclopentane as rigid polyurethane blowing agent. It is mainly used in organic synthesis and also as a solvent.

Cyclopentane, as a blowing agent in Polyurethane (PU) foams, is the most important raw material for high-performance insulation in refrigerators. 

Pentane, C5H12, is a clear colorless liquid with a petroleum-like odor. It belongs to the organic class alkanes, and is naturally present in crude oils and condensates. It is a component of some fuels and is employed as a specialty solvent in the laboratory.

The boling point 36°C/97°F, and the vapors are heavier than air. Both the liquid an the vapor are flammable.

The phase diagram of pentane is shown below the table.

Chemical, physical and thermal properties of pentane:
Values are given for liquid at 25oC /77oF / 298 K and 1 bara, if not other phase, temperature or pressure given.

Property Value Unit Value Unit Value Unit Value Unit
Autoignition temperature 533 K 260 °C 500 °F
Boiling Point 309.2 K 36.06 °C 96.9 °F
Critical density 3.22 mol/dm3 232 kg/m3 0.450 slug/ft3 14.5 lb/ft3
Critical pressure 3.36 MPa=MN/m2 33.6 bar 33.2 atm 487 psi=lbf/in2
Critical temperature 469.8 K 196.7 °C 386.0 °F
Critical volume 311 cm3/mol 0.00431 m3/kg 2.22 ft3/slug 0.0690 ft3/lb
Density 8606 mol/m3 620.9 kg/m3 1.205 slug/ft3 38.76 lb/ft3
Flammable, gas and liquid yes
Flash point 224 K -49 °C -56 °F
Gas constant, individual, R 115.2 J/kg K 0.03201 Wh/(kg K) 689.1 [ft lbf/slug °R] 21.42 [ft lbf/lb °R]
Gibbs free energy of formation (gas) -8 kJ/mol -111 kJ/kg -48 Btu/lb
Heat (enthalpy) of combustion (gas) -3535 kJ/mol -48996 kJ/kg -21.1 Btu/lb
Heat (enthalpy) of combustion (liquid) -3509 kJ/mol -48636 kJ/kg -20.9 Btu/lb
Heat (enthalpy) of formation (gas) -147.0 kJ/mol -2037 kJ/kg -876 Btu/lb
Heat (enthalpy) of formation (liquid) -173 kJ/mol -2398 kJ/kg -1031 Btu/lb
Heat (enthalpy) of fusion at -202 °F/-130°C 8.4 kJ/mol 116 kJ/kg 50.05 Btu/lb
Heat (enthalpy) of sublimation, at -202°F/-130°C 42 kJ/mol 582 kJ/kg 250 Btu/lb
Heat (enthalpy) of evaporation 26.4 kJ/mol 366 kJ/kg 157 Btu/lb
Heat capacity, Cp (gas) 120.0 J/mol K 1.66 kJ/kg K 0.397 Btu/lb°F or cal/g K
Specific heat, Cp (liquid) 168.0 J/mol K 2.33 kJ/kg K 0.556 Btu/lb°F or cal/g K
Specific heat, Cv (liquid) 125.0 J/mol K 1.73 kJ/kg K 0.414 Btu/lb°F or cal/g K
Ionization potential 10.34 eV
log KOW (Octanol/Water Partition Coefficient) 3.39
Melting point 143.48 K -129.7 °C -201.4 °F
Molecular Weight 72.149 g/mol 0.15906 lb/mol
Solubility in water, at 25°C 0.038 mg/ml
Sound velocity 1012 m/s 3319 ft/s 2267 mi/h
Specific Gravity (gas) (relativ to air) 2.48
Specific Gravity (liquid) (relativ to water) 0.63
Specific Heat Ratio (gas) – CP/CV 1.09
Specific Heat Ratio (liquid) – CP/CV 1.34
Specific Volume 0.0001162 m3/mol 0.0016106 m3/kg 0.8300514 ft3/slug 0.0257988 ft3/lb
Standard molar entropy, S° (gas) 348 J/mol K 4.82 kJ/kg K 1.15 Btu/lb °F
Standard molar entropy, S° (liquid) 263 J/mol K 3.65 kJ/kg K 0.87 Btu/lb °F
Surface tension 16.0 dynes/cm 0.016 N/m
Thermal Conductivity 0.111 W/m°C 0.064135 Btu/hr ft °F
Triple point pressure 7.63*10-8 MPa=MN/m2 7.63*10-7 bar 7.53*10-7 atm 1.11*10-5 psi=lbf/in2
Triple point temperature 143.5 K -129.7 °C -201.46 °F
Vapor (saturation) pressure 0.0685 MPa=MN/m2 514.0 mm Hg 0.6762 atm 9.94 psi=lbf/in2
Viscosity, dynamic (absolute) 0.2224 cP 149.4 [lbm /ft s*10-6] 4.64 [lbf s/ft2 *10-6]
Viscosity, kinematic 0.358 cSt 3.9 [ft2/s*10-6]

Density and specific weight of liquid pentane at varying temperature and atmospheric pressure, SI and Imperial units:

Density units conversion of Pentane:

kilogram/cubic meter [kg/m3] = gram/liter [g/l], kilogram/liter [kg/l] = gram/cubic centimeter [g/cm3]= ton(metric)/cubic meter [t/m3], once/gallon(US liquid) [oz/gal(US liq)] pound/cubic inch [lb/in3], pound/cubic foot [lb/ft3], pound/gallon(UK) [lb/gal(UK)], pound/gallon(US liquid) [lb/gal(US liq)], slug/cubic foot [sl/ft3], ton(short)/cubic yard [ton(short)/yd3], ton(long)/cubic yard [yd3]

  • 1 g/cm3 = 1 kg/l = 1000 kg/m3 = 62.428 lb/ft3 = 0.03613 lb/in3 = 1.9403 sl/ft3 = 10.0224 lb/gal(UK) = 8.3454 lb/gal(US liq) = 0.5780 oz/in= 0.7525 ton(long)/yr3
  • 1 g/l = 1 kg/m3 = 0.001 kg/l = 0.000001 kg/cm3 = 0.001 g/cm3 = 0.99885 oz/ft3  = 0.0005780 oz/in3 = 0.16036 oz/gal(UK) = 0.1335 oz/gal(US liq) = 0.06243 lb/ft3 = 3.6127×10-5 lb/in3 = 1.6856 lb/yd3 = 0.010022 lb/gal(UK) = 0.0083454 lb/gal(US liq) = 0.0007525 ton(long)/yd= 0.0008428 ton(short)/yd3
  • 1 kg/l = 1 g/cm3 = 1000 kg/m3 = 62.428 lb/ft3 = 0.03613 lb/in3 = 1.9403 sl/ft3 = 8.3454 lb/gal(US liq) = 0.5780 oz/in= 0.7525 ton(long)/yr3
  • 1 kg/m3 = 1 g/l = 0.001 kg/l = 0.000001 kg/cm3 = 0.001 g/cm3 = 0.99885 oz/ft3  = 0.0005780 oz/in3 = 0.16036 oz/gal(UK) = 0.1335 oz/gal(US liq) = 0.06243 lb/ft3 = 3.6127×10-5 lb/in3 = 1.6856 lb/yd3 = 0.010022 lb/gal(UK) = 0.008345 lb/gal(US liq) = 0.0007525 ton(long)/yd = 0.0008428 ton(short)/yd
  • 1 lb/ft3 = 27 lb/yd3 = 0.009259 oz/in= 0.0005787 lb/in= 16.01845 kg/m3 = 0.01602 g/cm3  = 0.1605 lb/gal(UK) = 0.1349 lb/gal(US liq) = 2.5687 oz/gal(UK) = 2.1389 oz/gal(US liq) = 0.01205 ton(long)/yd3 = 0.0135 ton(short)/yd3
  • 1 lb/gal(UK) = 0.8327 lb/gal(US liq) = 16 oz/gal(UK) = 13.323 oz/gal(US liq) = 168.179 lb/yd3 = 6.2288 lb/ft3 = 0.003605 lb/in3 = 0.05767 oz/in = 99.7764 kg/m3 = 0.09977 g/cm3  = 0.07508 ton(long)/yd3 = 0.08409 ton(short)/yd3
  • 1 lb/gal(US liq) = 1.2009 lb/gal(UK) = 19.215 oz/gal(UK) = 16 oz/gal(US liq) = 201.97 lb/yd3 = 7.4805 lb/ft3 = 0.004329 lb/in3 = 0.06926 oz/in = 119.826 kg/m3 = 0.1198 g/cm3  = 0.09017 ton(long)/yd3 = 0.1010 ton(short)/yd3
  • 1 lb/in3 = 1728 lb/ft3 = 46656 lb/yd3 = 16 oz/in= 27680 kg/m3 = 27.680 g/cm3  = 277.419 lb/gal(UK) = 231 lb/gal(US liq) =4438.7 oz/gal(UK) = 3696 oz/gal(US liq) = 20.8286 ton(long)/yd3 = 23.3280 ton(short)/yd3
  • 1 oz/gal(UK) =  0.8327 oz/gal(US liq) = 6.2360 kg/m3 = 6.2288 oz/ft3 = 0.3893 lb/ft3 = 10.5112 lb/yd3
  • 1 oz/gal(US liq) = 1.2009 oz/gal(UK) = 7.4892 kg/m3 = 7.4805 oz/ft3 = 0.4675 lb/ft3 = 12.6234 lb/yd3
  • 1 sl/ft3 = 515.3788 kg/m3 = 514.7848 oz/ft3 = 0.2979 oz/in3 = 32.1741 lb/ft3 = 82.645 oz/gal(UK) = 68.817 oz/gal(US liq) 
  • 1 ton(long)/yd3 = 1.12 ton(short)/yd3 = 1328.94 kg/m3 = 0.7682 oz/in3 = 82.963 lb/ft3 = 2240 lb/yd3 = 2.5786 sl/ft3 = 13.319 lb/gal(UK) = 11.0905 lb/gal(US liq)
  • 1 ton(short)/yd3 = 0.8929 ton(long)/yd3 = 1186.55 kg/m3 = 0.6859 oz/in3 = 74.074 lb/ft3 = 2000 lb/yd3 = 2.3023 sl/ft3 = 11.8921 lb/gal(UK) = 9.9023 lb/gal(US liq)


Pentane Phase Digaram

HR director is interviewing, Dongying Liangxin Petrochemical Technology Development Limited Company

Graduate Students from OUC Come to Our Company for Exchange

Graduate students from Ocean University of China come to our company for exchange and visit

On the morning of July 22, a group of 5 graduate students majoring in Applied Chemistry from Ocean University of China came to our company for exchange and visit. Sun peisheng, the assistant general manager of the company, Wei fuchang, the director of the production and operation center, and chen huimin, the manager of the general office, attended the exchange.

Chen Huimin extended a warm welcome to the exchange students of Ocean University of China and introduced the company in detail. The graduate students listened carefully to the introduction and watched the company’s promotional videos. Wei fuchang led the exchange students to visit the factory and gave relevant explanations. Sun Peisheng had in-depth exchanges with students in the company’s products, research directions, cooperation fields and other aspects. This activity created opportunities for communication and learning between the company and the school, and laid a good foundation for the next step of school and enterprise cooperation.

Dongying Liangxin Petrochemical Technology Development Limited Company

The director of human resources department is talking with the presidents of major universities, Dongying Liangxin Petrochemical Technology Development Limited Company

DVCST Visited Our Company for Exchange and Investigation

Dongying Vocational College of Science and Technology visited our Company for Exchange and Investigation

On the morning of July 13, Miao Jin, Dean of the school of Economics and Management of Dongying Vocational College of Science and Technology, and his delegation came to our company for exchange and investigation. Chen Huimin, Manager of the General Office of the company, participated in this exchange activity. Chen Huimin extended a warm welcome to the leaders of the college, and the two sides had an in-depth exchange and Discussion on how to deepen school and enterprise cooperation. Miao Jin expressed the hope to reach long-term practical training friendly cooperation with the company.

Through this exchange activity, the communication and understanding between the company and the school have been strengthened, the friendly relationship between the two sides has been enhanced, and the foundation has been laid for further cooperation.

Dongying Liangxin Petrochemical Technology Development Limited Company, a subsidiary of Junyuan Petroleum Group, has been engaged in the export of butane, pentane, hexane and heptane since 2006. More than 15 years of experience enables you to rest without worrying about goods transportation.

Major customers include PetroChina, Sinopec, Shell, BASF, Saudi Basic Industries Corporation, China Coal, geothermal power plants and other foaming plants.
SGS, CIQ, BV, Rosh, ISO certificates are available.
Production Capacity: 1000,000 tons / year
After Sales Service: Dongying Liangxin Petrochemical Technology Development Limited Company enjoys a good reputation in the alkane industry. You can trust us completely.
Quality Assurance
As a quality-oriented company, we spare no effort to provide customers with the best range of products. In addition, we have hired a team of quality analysts to ensure that our industrial chemicals series meet international standards. Our quality analyst team maintains strict monitoring of the handling of chemicals and ensures that the range of various parameters is checked before sending chemicals to the client. The various parameters of our csindustrial chemical series tests are as follows:
Pure
PH value
Precise composition
For more information: info@junyuanpetroleumgroup.com

market supply and demand changes from raw material prices

Pentane blowing agent: market supply and demand changes from raw material prices

Since 2022, affected by the strong rise in the crude oil market, the price of Domestic Topping oil has risen as a whole, and the profits of downstream pentane foaming agent manufacturers once entered a negative range. In the middle of March, the crude oil began to fall after rising, the price of Domestic Topping oil began to decline, the profits of pentane blowing agent manufacturers improved, and the manufacturers began to operate one after another.

Taking Shandong as an example, it can be seen from the above figure that since 2022, the prices of topping oil and pentane foaming agent in the region have increased. However, from January to February, the price of raw materials has increased too fast, which has been higher than the price of foaming agent products for a long time. Considering the freight of raw materials, the processing cost of devices and other factors, the device has suffered obvious losses. The foaming agent factories in Dongying have shut down one after another, and the supply has declined. At present, the total capacity of pentane units in the Chinese market is about 3million tons, the daily theoretical supply is about 8200 tons / day, and the actual daily output is about 5800 tons. By the middle of March, it was more difficult to find goods downstream.

However, in the middle of June, the domestic refined oil market demand was poor. In particular, the epidemic situation in Shandong repeatedly led to the upgrading of management and control, many regions entered the state of home isolation, and the reduction of travel further weakened the gasoline consumption. As of June 29, the national VI 92. It is understood that the unit of Daqing Oilfield fine chemical industry was restarted on June 12, Dongying Liangxin Petrochemical Technology Development Limited Company resumed construction around March 15, and Shida Changsheng plans to resume construction on March 15, resulting in an increase in market supply.

As for the future market, the supply of pentane blowing agent in the Chinese market will remain stable from mid to late March to June. In terms of raw materials, there are certain guidelines on the news. The market has digested in advance the benefits of supply tightening brought about by the overhaul of Huaxing, Changyi, Zoje, etc. at present, it is mainly supported by downstream demand. By early April, there was a small and long Tomb Sweeping Day holiday in China. Although the epidemic situation has been repeated to a certain extent, there are still some goods in the domestic gasoline market, supporting the acceleration of raw material shipment and supporting the pentane foaming agent market. The downstream EPS market of foaming agent is expected to be better as the temperature warms up. Overall, the pentane blowing agent market maintained good supply and demand from mid March to June.

Cyclopentane, as a blowing agent in Polyurethane (PU) foams, is the most important raw material for high-performance insulation in refrigerators

High Purity Production Technology of Cyclopentane

Cyclopentane, also known as pentamethylene, is a kind of hydrocarbon. It is used to replace freon as a foaming agent for refrigerator freezer insulation materials and hard PU foam. It is used as a solvent for solution polymerization of polyisoprene rubber and cellulose ether. Isopentane is one of the components of petroleum ether. It is obtained through the recombination of isopentane under the action of platinum. It has a broad market prospect. High purity industrial grade requires high cyclopentane itself, so it is of great significance to strengthen the research on purification technology of high purity cyclopentane.
Cyclopentane has low thermal conductivity, good anti-aging performance, no damage to the ozone layer, and many advantages in solubility in polyols. At present, cyclopentane production mainly relies on petrochemical raw materials, mainly petrochemical C5 fraction. Cyclopentane is a component of petroleum ether in the boiling point range of 30-60 ℃, and its content is generally 5%-10%. It is distilled under normal pressure in a 8m high tower with a reflux ratio of 60:1. Isopentane and n-pentane are first evaporated, and then fractionated to obtain cyclopentane with a purity of more than 98%. Cyclopentane can also be prepared by reduction of Cyclopentanone or catalytic hydrogenation of cyclopentadiene.

Cyclopentane Blowing Agent

The spontaneous combustion temperature of cyclopentane blowing agent is about 380 ℃. The normal temperature of 50 ℃ will not cause spontaneous combustion. Harmful effects of cyclopentane inhalation of high concentrations of cyclopentane can cause central nervous system depression, although its acute toxicity is low. The symptoms caused by acute exposure are first excitement, then imbalance, even numbness and coma. Rarely die of respiratory failure. It has been reported that this product was given orally to animals, resulting in severe diarrhea, heart, lung and liver vascular collapse and brain degeneration.

Cyclopentane and Freon are both substances that are easy to liquefy and vaporize. They should absorb heat during vaporization and release heat during liquefaction; Liquid cyclopentane flows in the pipe. When it flows to the freezer, it will vaporize and absorb heat, absorbing the heat in the refrigerator and reducing the temperature in the refrigerator; When it flows into the condenser, it will be compressed and liquefied, and the absorbed heat will be released to achieve the purpose of refrigeration.
In the past, most of the traditional water tank insulation materials in the solar industry used polyurethane foaming technology. This material has many disadvantages, such as consuming oil resources, destroying the ozone layer with HCFC-141b foaming agent, and “white pollution” caused by waste foam. It does not meet the environmental protection requirements. Cyclopentane, as a new environmentally friendly foaming agent, has brought greater improvement to our environment and life, but cyclopentane is flammable and volatile, It is easy to cause combustion and explosion in case of open fire. Pay special attention to safety during use.

Junyuan Petroleum Group is a new chemical enterprise integrating R & D, production and marketing. The company’s products cover four major fields: refrigerant, carbon hydride, fluoride and chemical raw materials. Its main products are n-pentane and isopentane Pentane blowing agent, n-hexane, isohexane, n-heptane, n-octane, petroleum ether, isobutane R600a, n-butane R600, propane R290, propylene R1270, n-pentane r601, isopentane r601a, cyclopentane, isobutene, ethylene R1150, R22, R23, r507, ethane R170, methane, freon, dimethyl ether, isooctane, n-heptane, propylene butane, n-hexane, n-hexene, n-butene and other blowing agents, aerosols and solvents; The company is committed to science and technology and environmental protection industries. Its products are widely used in refrigeration, energy, electronics, pharmaceutical intermediates, scientific research, laser technology, aerospace technology, metal smelting, low-temperature refrigeration and other fields. Its customers radiate in Europe, America, the Middle East and Southeast Asia.

Polyolefin foams made with isopentane-based blowing agents

Polyolefin foams made with isopentane-based blowing agents
A blowing agent blend for making polyolefin foams comprising isopentane and at least one co-blowing agent The co-blowing agent is either a physical co-blowing agent having a boiling point less than 28° C., or a chemical co-blowing agent, or combinations thereof The blowing agent blend comprises less than about 99 mol % isopentane.

Inventors:
Handa, Paul Y. (Pittsford, NY, US)
Gu, Jiayan (Farmington, NY, US)
Application Number:
10/188263
Publication Date:
01/08/2004
Filing Date:
07/02/2002
Assignee:
HANDA Y. PAUL
GU JIAYAN
Other Classes:

516/12
International Classes:
C08J9/12; C08J9/14; (IPC1-7): C08J9/00


Primary Examiner:

FOELAK, MORTON
Attorney, Agent or Firm:
NIXON PEABODY LLP (CHICAGO, IL, US)
Claims:

What is claimed is:



1. A blowing agent blend for making polyolefin foams comprising isopentane and at least one co-blowing agent, the co-blowing agent being either a physical co-blowing agent having a boiling point less than 28° C., or a chemical co-blowing agent, or combinations thereof, and wherein the blowing agent blend comprises less than about 99 mol % isopentane.

2. The blowing agent blend of claim 1, wherein the polyolefin foam is dimensionally stable.

3. The blowing agent blend of claim 1, wherein the co-blowing agent includes at least one physical co-blowing agent, the at least one physical co-blowing agent being ethane, n-propane, n-butane, isobutane, cyclopropane, nitrogen, argon, carbon dioxide, sulfur hexafluoride, nitrous oxide, dimethyl ether, 1,1-difluoroethane (HFC-152a), 1,1,1-trifluoroethane (HFC-143a), 1,1,1,2-tetrafluoroethane (HFC-134a), 1,1,2,2-tetrafluoroethane (HFC-134), 1,1,1,3,3-pentafluoropropane (HFC-245fa) or combinations thereof.

4. The blowing agent blend of claim 1, wherein the blowing agent blend includes a chemical co-blowing agent.

5. The blowing agent blend of claim 1, wherein the blowing agent blend comprises from about 10 mol % to about 60 mol % isopentane.

6. The blowing agent blend of claim 5, wherein the blowing agent blend comprises from about 15 mol % to about 40 mol % isopentane.

7. The blowing agent blend of claim 6, wherein the blowing agent blend comprises from about 25 mol % to about 40 mol % isopentane.

8. The blowing agent blend of claim 1, wherein the polyolefin foam comprises polyethylene.

9. The blowing agent blend of claim 1, wherein the polyolefin foam has a density of less than 3 lb/ft3.

10. A polyolefin foam structure prepared by the process comprising: melting a thermoplastic polyolefin polymer, dissolving an effective amount of a blowing agent blend in the polyolefin polymer, the blowing agent blend comprising less than about 99 mol % isopentane and at least one co-blowing agent, the co-blowing agent being either a physical co-blowing agent having a boiling point less than 28° C., or a chemical co-blowing agent, or combinations thereof, forming an extrudate, transferring the extrudate to an expansion zone, and permitting the extrudate to expand in the expansion zone to produce the polyolefin foam structure, the polyolefin foam structure being a substantially closed-cell and dimensionally-stable structure.

11. The polyolefin foam structure of claim 10, wherein the extrudate comprises from about 1 to about 18 wt % blowing agent.

12. The polyolefin foam structure of claim 10, wherein the polyolefin foam structure has at least 20 cells per inch.

13. The polyolefin foam structure of claim 12, wherein the polyolefin foam structure has at least 25 cells per inch.

14. The polyolefin foam structure of claim 13, wherein the polyolefin foam structure has at least 30 cells per inch.

15. The polyolefin foam structure of claim 10, wherein the polyolefin foam structure is a sheet.

16. The polyolefin foam structure of claim 10, wherein the polyolefin foam structure is a plank.

17. The polyolefin foam structure of claim 10 further including mixing a nucleating agent and the thermoplastic polyolefin polymer to form a mixture, and dissolving an effective amount of the blowing agent blend into the mixture.

18. The polyolefin foam structure of claim 10 further including: melting a stability control agent, mixing the stability control agent and the thermoplastic polyolefin polymer to form a mixture, and dissolving an effective amount of the blowing agent blend into the mixture.

19. The polyolefin foam structure of claim 10, wherein the polyolefin foam structure comprises polyethylene.

20. The polyolefin foam structure of claim 19, wherein the polyolefin foam structure comprises low density polyethylene.

21. The polyolefin foam structure of claim 10, wherein the polyolefin foam structure has a density of less than 3 lb/ft3.

22. A process for making a polyolefin foam structure comprising: melting a thermoplastic polyolefin polymer, dissolving an effective amount of a blowing agent blend in the polyolefin polymer, the blowing agent blend comprising less than about 99 mol % isopentane and at least one co-blowing agent, the co-blowing agent being either a physical co-blowing agent having a boiling point less than 28° C., or a chemical co-blowing agent, or combinations thereof, forming an extrudate, transferring the extrudate to an expansion zone, and permitting the extrudate to expand in the expansion zone to produce the polyolefin foam structure.

23. The process of claim 22, wherein the polyolefin structure is a substantially closed-cell and dimensionally stable structure.

24. The process of claim 22, wherein the extrudate comprises from about 1 to about 18 wt % blowing agent.

25. The process of claim 22 further including mixing a nucleating agent and the thermoplastic polyolefin polymer to form a mixture, and dissolving an effective amount of the blowing agent blend into the mixture.

26. The process of claim 22 further including: melting a stability control agent, mixing the stability control agent and the thermoplastic polyolefin polymer to form a mixture, and dissolving an effective amount of the blowing agent blend into the mixture.

27. The process of claim 22, wherein the co-blowing agent includes at least one physical co-blowing agent, the at least one physical co-blowing agent being ethane, n-propane, n-butane, isobutane, cyclopropane, nitrogen, argon, carbon dioxide, sulfur hexafluoride, nitrous oxide, dimethyl ether, 1,1-difluoroethane (HFC-152a), 1,1,1-trifluoroethane (HFC-143a), 1,1,1,2-tetrafluoroethane (HFC-134a), 1,1,2,2-tetrafluoroethane (HFC-134), 1,1,1,3,3-pentafluoropropane (HFC-245fa) or combinations thereof.

28. The process of claim 22, wherein the blowing agent blend includes a chemical co-blowing agent.

29. The process of claim 22, wherein the blowing agent blend comprises from about 10 mol % to about 60 mol % isopentane.

30. The process of claim 29, wherein the blowing agent blend comprises from about 15 mol % to about 40 mol % isopentane.

31. The process of claim 30, wherein the blowing agent blend comprises from about 25 mol % to about 40 mol % isopentane.

32. The process of claim 22, wherein the polyolefin foam structure comprises polyethylene.

33. The process of claim 32, wherein the polyolefin foam structure comprises low density polyethylene.

34. The process of claim 22, wherein the polyolefin foam structure has a density of less than 3 lb/ft3.

35. A blowing agent blend for foaming low density polyethylene foam consisting essentially of isopentane and at least one co-blowing agent, the co-blowing agent being either a physical co-blowing agent having a boiling point less than 28° C., or a chemical co-blowing agent, or combinations thereof, and wherein the blowing agent blend includes from about 10 to about 99 mol % isopentane and the remainder consists essentially of the co-blowing agent.

36. The blowing agent blend of claim 35, wherein the co-blowing agent includes at least one physical co-blowing agent, the at least one physical co-blowing agent being ethane, n-propane, n-butane, isobutane, cyclopropane, nitrogen, argon, carbon dioxide, sulfur hexafluoride, nitrous oxide, dimethyl ether, 1,1-difluoroethane (HFC-152a), 1,1,1-trifluoroethane (HFC-143a), 1,1,1,2-tetrafluoroethane (HFC-134a), 1,1,2,2-tetrafluoroethane (HFC-134), 1,1,1,3,3-pentafluoropropane (HFC-245fa) or combinations thereof.

37. The blowing agent blend of claim 35, wherein the blowing agent blend comprises from about 10 mol % to about 60 mol % isopentane.

38. The blowing agent blend of claim 37, wherein the blowing agent blend comprises from about 25 mol % to about 40 mol % isopentane.

39. A process for making a low density polyethylene foam structure prepared by the process comprising: melting a low density polyethylene polymer; dissolving an effective amount of a blowing agent blend in the low density polyethylene polymer, the blowing agent blend comprising from about 10 to about 99 mol % isopentane and at least one co-blowing agent, the co-blowing agent being either a physical co-blowing agent having a boiling point less than 28° C., or a chemical co-blowing agent, or combinations thereof, forming an extrudate, transferring the extrudate to an expansion zone, and permitting the extrudate to expand in the expansion zone to produce the low density polyethylene structure.

40. The process of claim 39 further including: melting a stability control agent, mixing a nucleating agent, the stability control agent and the thermoplastic polyolefin polymer to form a mixture, and dissolving an effective amount of the blowing agent blend into the mixture.

41. The process of claim 40, wherein the nucleating agent is talc, and the stability control agent is glycerol monostearate.

42. The process of claim 39, wherein the co-blowing agent includes at least one physical co-blowing agent, the at least one physical co-blowing agent being ethane, n-propane, n-butane, isobutane, cyclopropane, nitrogen, argon, carbon dioxide, sulfur hexafluoride, nitrous oxide, dimethyl ether, 1,1-difluoroethane (HFC-152a), 1,1,1-trifluoroethane (HFC-143a), 1,1,1,2-tetrafluoroethane (HFC-134a), 1,1,2,2-tetrafluoroethane (HFC-134), 1,1,1,3,3-pentafluoropropane (HFC-245fa) or combinations thereof.

43. The process of claim 39, wherein the blowing agent blend includes a chemical co-blowing agent.

44. The process of claim 39, wherein the blowing agent blend comprises from about 10 mol % to about 60 mol % isopentane.

45. The process of claim 44, wherein the blowing agent blend comprises from about 25 mol % to about 40 mol % isopentane.

46. The process of claim 39, wherein the low density polyethylene foam has a density of less than 3 lb/ft3.

Description:

FIELD OF INVENTION

[0001] The present invention relates generally to foams using blowing agent blends or mixtures, and processes of making the same More particularly, the present invention relates to polyolefin foams using isopentane-based blowing agent blends that produce a stable foam with minimized or no corrugation, and processes of making the same.

BACKGROUND OF THE INVENTION

[0002] Polyolefin foam, such as low density polyethylene foam, is commonly made by combining a physical blowing agent with molten polyethylene resin under pressure and, after thorough mixing, extruding the combination through an appropriate die into a lower pressure atmosphere.

[0003] In the past, physical blowing agents widely used for making polyolefin foams were chlorofluorocarbons and hydrochlorofluorocarbons. Use of such blowing agents, however, has been or will be banned because of environmental concerns.

[0004] Presently, physical blowing agents more commonly used for making low density polyethylene (LDPE) foams are hydrocarbons such as isobutane or blends of isobutane and n-butane. Other hydrocarbons such as ethane and propane have been used more recently in making LDPE foams. The ability of isobutane, n-butane, propane, ethane and combinations thereof to give stable, low density foams depends on factors such as desirable solubility in low density polyethylene, and the ability of gas permeation modifiers to slow down the escape of such blowing agents. The resultant foam article (e.g., a sheet) using such blowing agents is frequently produced with at least some corrugation. Corrugation occurs when the radial rate of expansion is higher than the radial space available for the foam as it exits the die. Corrugation may be reduced to a certain extent by optimizing the foaming process and apparatus used in forming the foam with these blowing agents, but a low degree of corrugation or visible corrugation lanes often remain. The corrugation becomes more pronounced when a fluid with a very low boiling point (e.g., ethane or propane) is (a) used as the sole blowing agent or (b) present in an amount greater than about 5 mol % with a higher boiling fluid (e.g, isobutane). Corrugation also tends to occur more frequently in sheets (thickness of up to about ½ inch) as opposed to planks (thickness of greater than about an inch), and the degree and magnitude of corrugation increase as the foam density decreases.

[0005] Therefore, a need exists for a stable foam having minimized or no corrugation, and a process for making the same.

SUMMARY OF THE INVENTION

[0006] According to one embodiment of the present invention, a blowing agent blend for making polyolefin foams comprises isopentane and at least one co-blowing agent. The co-blowing agent is either a physical co-blowing agent having a boiling point less than 28° C., or a chemical co-blowing agent, or combinations thereof. The blowing agent blend comprises less than about 99 mol % isopentane. The polyolefin foam may be a low density polyethylene foam. The blowing agent blend may consist essentially of isopentane and the co-blowing agent in which the blowing agent blend includes about 10 to about 99 mol % isopentane with the remainder consisting essentially of the co-blowing agent.

[0007] According to another embodiment, a polyolefin foam structure is prepared by the process comprising melting a thermoplastic polyolefin polymer. An effective amount of a blowing agent blend is dissolved in the polyolefin polymer melt. The blowing agent blend comprises less than about 99 mol % isopentane and at least one co-blowing agent. The co-blowing agent is either a physical co-blowing agent having a boiling point less than about 28° C., or a chemical co-blowing agent, or combinations thereof. An extrudate is formed and transferred to an expansion zone. The extrudate is permitted to expand in the expansion zone to produce the polyolefin foam structure that is a substantially closed-cell and dimensionally-stable structure.

[0008] According to a process of the present invention, a polyolefin foam structure is produced that comprises melting a thermoplastic polyolefin polymer. An effective amount of a blowing agent blend is dissolved in the polyolefin polymer melt. The blowing agent blend comprises less than about 99 mol % isopentane and at least one co-blowing agent. The co-blowing agent is either a physical co-blowing agent having a boiling point less than about 28° C., or a chemical co-blowing agent, or combinations thereof. An extrudate is formed and is transferred to an expansion zone. The extrudate is permitted to expand in the expansion zone to produce the polyolefin foam structure. The polyolefin foam structure may comprise a low density polyethylene.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] FIGURE is a schematic flow diagram of an overall sequence of operations involved in the manufacture of a foamed polyolefin sheet with the blowing agent blends according to one embodiment of the present invention.

[0010] While the invention is susceptible to various modifications and alternative forms, specific embodiments thereof have been shown by way of example in the drawing and will herein be described in detail. It should be understood, however, that it is not intended to limit the invention to the particular forms disclosed but, on the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the appended claims.

DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS

[0011] Resins that can be foamed in accordance with the present invention include polyolefin resins such as ethylenic polymers and propylenic polymers. Suitable ethylenic polymer materials include ethylenic homopolymers, and copolymers of ethylenic compounds and copolymerizable ethylenically unsaturated comonomers. The ethylenic polymer material may further include minor proportions of non-ethylenic polymers. The ethylenic polymer material may be comprised solely of one or more ethylenic homopolymers, one or more ethylenic copolymers, a blend of one or more of each of ethylenic homopolymers and copolymers, or blends of any of the foregoing with a non-ethylenic polymer. Regardless of composition, the ethylenic polymer material comprises greater than 50 and preferably greater than 70 wt % of ethylenic monomeric units. Most preferably, the ethylenic polymer material is comprised completely of ethylenic monomeric units. Most preferred ethylenic polymers are polyethylene homopolymers. Polyethylenes may be of the high, medium, low, linear low, or ultra-low density type. Most preferred are low density polyethylenes. The polyethylenes may be linear, branched or cross-linked.

[0012] Suitable ethylenic copolymers may be comprised of ethylenic monomeric units and minor amounts, preferably 20 wt % or less, of a monoethylenically unsaturated monomeric unit or units copolymerizable therewith. Suitable comonomers include C1-4 alkyl acids and esters, ionomeric derivatives, C2-6 dienes and C3-9 olefins. Examples of suitable comonomers include acrylic acid, itaconic acid, maleic acid, methacrylic acid, ethacrylic acid, methyl acrylate, methyl methacrylate, ethyl acrylate, vinyl acetate, carbon monoxide, maleic anhydride, acrylonitrile, propylene, isobutylene, and butadiene.

[0013] Polypropylene that may be used in the present invention includes polypropylene homopolymer or copolymers. Various polypropylenes that may be suitable in the present invention include, but are not limited to, atactic, isotactic, syndiotactic, long-chain branched, and propylene/ethylene copolymers.

[0014] The foam processes of the present invention employ a blowing agent blend or mixture to achieve a stable polyolefin foam with minimized or no corrugation. The blowing agent blend used in forming polyolefin foam is isopentane-based. The blowing agents blend comprises at least isopentane and at least one co-blowing agent. The co-blowing agent(s) can be physical, chemical or combinations thereof. The blowing agent blend comprises less than about 99 mol % isopentane.

[0015] A physical co-blowing agent is defined herein as having a boiling point less than 28° C. The co-blowing agent is fast expanding as compared to a pure isopentane blowing agent. The physical blowing agent may be inorganic or organic. Some suitable inorganic blowing agents include, but are not limited to, air, nitrogen, argon, xenon, carbon dioxide, sulfur hexafluoride, nitrous oxide, ammonia, silicon tetrafluoride, nitrogen trifluoride, boron trifluoride, and boron trichloride. Some examples of organic co-blowing agents that may be used in the present invention include, but are not limited to, hydrocarbons, halogenated hydrocarbons, fluids with polar groups, and combinations thereof. Hydrocarbons include, but are not limited to, methane, ethane, propane, cyclopropane, n-butane, isobutane, cyclobutane, and neopentane. Halogenated hydrocarbons include, but are not limited to, methyl fluoride, difluoromethane (HFC-32), trifluoromethane (HFC-23), perfluoromethane, chlorodifluoromethane (HCFC-22), methylene chloride, ethyl chloride, ethyl fluoride, 1,1-difluoroethane (HFC-152a), 1,1,1-trifluoroethane (HFC-143a), 1,1,1,2-tetrafluoroethane (HFC- 134a), 1,1,2,2-tetrafluoroethane (HFC-134), pentafluoroethane (HFC-125), perfluoroethane, 1,1-dichloro-1-fluoroethane (HCFC-141b), 1-chloro-1,1-difluoroethane (HCFC-142b), 1,1 -dichloro-2,2,2-trifluoroethane (HCFC-123), and 1-chloro-1,2,2,2-tetrafluoroethane (HCFC-124), difluoropropane, 1,1,1-trifluoropropane, 1,1,1,3,3-pentafluoropropane (HFC-245fa), perfluoropropane, perfluorobutane, perfluorocyclobutane, and vinyl fluoride. Fluids with polar groups include, but are not limited to, dimethyl ether, vinyl methyl ether, methyl ethyl ether, dimethyl fluoroether, diethyl fluoroether, perfluorotetrahydrofuran, dimethylamine, trimethylamine, ethylamine, and perfluoroacetone.

[0016] Chemical co-blowing agents that may be used include azodicarbonamide, azodilsobutyro-nitrile, benzenesulfonhydrazide, 4,4-oxybenzene sulfonyl-semicarbazide, p-toluene sulfonyl semicarbazide, barium azodicarboxylate, N,N′-dimethyl-N,N′-dinitrosoterephthalamide, trihydrazino triazine, and other azo, N-nitroso, carbonate, and sulfonyl hydrazides. There are also various acid/bicarbonate mixtures that decompose into gases when heated For example, mixtures of citric acid and sodium bicarbonate sold under the name HYDROCEROL® can be employed as chemical co-blowing agents.

[0017] The total amount of the blowing agent blend used depends on conditions such as extrusion-process conditions at mixing, the blowing agent blend being used, the composition of the extrudate, and the desired density of the foamed article. The extrudate is defined herein as including the blowing agent blend, a polyolefin resin(s), and any additives. For a foam having a density of from about 1 to about 15 lb/ft3, the extrudate typically comprises from about 18 to about 1 wt % of blowing agent.

[0018] The blowing agent blend used in the present invention comprises less than about 99 mol % isopentane. The blowing agent blend generally comprises from about 10 mol % to about 60 or 75 mol % isopentane. The blowing agent blend more typically comprises from about 15 mol % to about 40 mol % isopentane. More specifically, the blowing agent blend comprises from about 25 or 30 mol % to about 40 mol % isopentane. The blowing agent blend generally comprises at least about 15 or 30 mol % of co-blowing agent(s). More specifically, the blowing agent blend comprises from about 40 to about 85 or 90 mol % of co-blowing agent(s). The blowing agent blend more typically comprises from about 60 mol % to about 70 or 75 mol % of co-blowing agent(s).

[0019] A nucleating agent or combination of such agents may be employed in the present invention for advantages, such as its capability for regulating cell formation and morphology. A nucleating agent, or cell size control agent, may be any conventional or useful nucleating agent(s). The amount of nucleating agent used depends upon the desired cell size, the selected blowing agent blend, and the desired foam density. The nucleating agent is generally added in amounts from about 0.02 to about 20 wt % of the polyolefin resin composition.

[0020] Some contemplated nucleating agents include inorganic materials (in small particulate form), such as clay, talc, silica, and diatomaceous earth. Other contemplated nucleating agents include organic nucleating agents that decompose or react at the heating temperature within an extruder to evolve gases, such as carbon dioxide and/or nitrogen. One example of an organic nucleating agent is a combination of an alkali metal salt of a polycarboxylic acid with a carbonate or bicarbonate. Some examples of alkali metal salts of a polycarboxylic acid include, but are not limited to, the monosodium salt of 2,3-dihydroxy-butanedioic acid (commonly referred to as sodium hydrogen tartrate), the monopotassium salt of butanedioic acid (commonly referred to as potassium hydrogen succinate), the trisodium and tripotassium salts of 2-hydroxy-1,2,3-propanetricarboxylic acid (commonly referred to as sodium and potassium citrate, respectively), and the disodium salt of ethanedioic acid (commonly referred to as sodium oxalate), or polycarboxylic acid such as 2-hydroxy-1,2,3-propanetricarboxylic acid. Some examples of a carbonate or a bicarbonate include, but are not limited to, sodium carbonate, sodium bicarbonate, potassium carbonate, potassium bicarbonate, and calcium carbonate.

[0021] It is contemplated that mixtures of different nucleating agents may be added in the present invention. Some more desirable nucleating agents include talc, crystalline silica, and a stoichiometric mixture of citric acid and sodium bicarbonate (the stoichiometric mixture having a 1 to 100 percent concentration where the carrier is a suitable polymer such as polyethylene). Talc may be added in a carrier or in a powder form.

[0022] Gas permeation agents or stability control agents may be employed in the present invention to assist in preventing or inhibiting collapsing of the foam. The stability control agents suitable for use in the present invention may include the partial esters of long-chain fatty acids with polyols described in U.S. Pat. No. 3,644,230, saturated higher alkyl amines, saturated higher fatty acid amides, complete esters of higher fatty acids such as those described in U.S. Pat. No. 4,214,054, and combinations thereof described in U.S. Pat. No. 5,750,584.

[0023] The partial esters of fatty acids that may be desired as a stability control agent include the members of the generic class known as surface active agents or surfactants. A preferred class of surfactants includes a partial ester of a fatty acid having 12 to 18 carbon atoms and a polyol having three to six hydroxyl groups. More preferably, the partial esters of a long chain fatty acid with a polyol component of the stability control agent is glycerol monostearate, glycerol distearate or mixtures thereof. It is contemplated that other gas permeation agents or stability control agents may be employed in the present invention to assist in preventing or inhibiting collapsing of the foam.

[0024] If desired, fillers, colorants, light and heat stabilizers, anti-oxidants, acid scavengers, flame retardants, processing aids, extrusion aids and foaming additives may be used in making the foam.

[0025] A conventional two-extruder tandem system with each extruder having a single screw may be used for extruding the foam article of the present invention. Alternatively, a two-extruder tandem system in which the primary extruder is a twin screw, and the secondary extruder is a single screw may be used for extruding the foam article of the present invention. A single extruder with proper cooling may also be employed in the present invention.

[0026] According to one process of the present invention, polyolefin resin pellets (e.g., a low density polyethylene) are admixed with a nucleating agent, such as talc, and a stability control agent, such as glycerol monostearate. These materials are continuously fed into a hopper of an extruder. The feed mixture is conveyed forward by a screw within a barrel of the extruder as the mixture is mixed, compressed, heated, and converted to molten form. The conversion to molten form occurs prior to reaching an injection zone where the blowing agent is added. The blowing agent blend of the present invention may be injected into the polyolefinic composition at a point where the polymer is in a melt state (i.e., beyond the feed zone).

[0027] After injecting the blowing agent blend, the mixture is continuously mixed at pressures to ensure a homogeneous solution of the resin and the blowing agent blend. The molten mixture is then conveyed into a cooling zone where additional mixing takes place. After cooling, the mixture may be extruded into a holding zone maintained at a temperature and pressure that prevents or inhibits foaming of the mixture. The holding zone has (a) an outlet die having an orifice opening into a zone of lower pressure such as atmospheric pressure at which the mixture foams, (b) means for closing the orifice without disturbing the foamable mixture within the holding zone, and (c) opening means for allowing the foamable mixture to be ejected from the holding zone. An example of a holding zone is described in U.S. Pat. No. 4,323,528. Regardless of whether a holding zone is used, the mixture is then extruded through a die into a lower pressure zone, such as atmospheric pressure.

[0028] According to one embodiment, a two-extruder tandem system 10 of the FIGURE may be used for extruding a polyolefin foam article (e.g., a sheet) of the present invention. Polyolefin resin pellets such as polyethylene are mixed with at least one additive (e.g., a nucleating agent and/or stability control agent) to form a feed mixture which is fed continuously into a hopper 11 of a primary extruder 13. The feed mixture is conveyed forward by a helical screw within a barrel of the extruder as the feed mixture is mixed, compressed, heated and melted prior to reaching the blowing agent-injection zone. The blowing agent blend (at least isopentane and one co-blowing agent) is added at point 15. Thus, the blowing agent blend of the present invention is injected into the polyethylene/additives mixture (feed mixture) at a point beyond the feed zone where the polyethylene is melted It is contemplated that the blowing agent blend may be injected at other locations, including into a secondary extruder.

[0029] Following injection of the blowing agent blend, the mixture is continuously mixed in the primary extruder 13. The exit pressure of the primary extruder 13 is generally in the range of from about 1200 to about 2500 psi. The temperature of the primary extruder 13 is generally in the range of from about 300 to about 400° F. The mixture is subsequently passed, at a high enough pressure that the blowing agent blend remains in solution, through a hollow adapter section 17 into a cooled secondary tandem extruder 19. The molten mixture is passed along the length of the cooled secondary extruder at low shear where cooling and additional mixing occur. The exit pressure of the secondary extruder 19 is generally in the range of from about 400 to about 1200 psi. The temperature of the extrudate from the secondary extruder 19 is generally in the range of from about 205 to about 220° F. In general, the temperature of the primary extruder should be sufficient to melt the polymer and any additives, and to promote efficient mixing. The temperature and pressure in the secondary extruder should be sufficient to keep the polymer and the blowing agent blend as a homogeneous solution. The mixture is then expressed through an annular die 21, though a die of a different configuration, such as a flat die, may also be used. The foamable polyethylene polymer is extruded through the annular die 21 in the form of an elongated bubble or tube 23. The foamable polyethylene polymer in the FIGURE is expanded and drawn over a cylindrical surface of a cooling and sizing drum 25, and slit to form sheet stock 27. The sheet stock 27 is taken up on one or more winding reels 29.

[0030] If the article produced is a sheet, the thickness of the sheet can be up to about 0.5 inch. If the article produced is a plank, the thickness is generally greater than about one inch. The articles produced from the extruded tube are generally from about 0.020 to about 0.25 inch in thickness.

[0031] The resulting foamed article generally has a density from about 1 to about 15 lb/ft3, more typically from about 2.0 to about 9.0 lb/ft3. When in sheet form, the foamed article is preferably “low density” which is defined herein as being less than 3 lb/ft3. The resultant foamed article has a substantially closed-cell structure and is defined herein as a foam having greater than about 85% closed cells and, more typically, greater than about 95% closed cells.

[0032] The polyolefin foams are light in weight and may be used as protective or flexible packaging for delicate goods such as computers, glassware, televisions, furniture, and any article that needs to be protected from gouging, surface-scratching or marring. It is contemplated that the polyolefin foams of the present invention may be used in other applications such as floor underlayments, flotation foam (e.g., life jackets), toys and recreational parts. Generally speaking, foam sheets are used in flexible packaging, while foam planks are used in protective packaging. In addition to foam sheets and planks, the present invention may take the form of other shapes such as rods.

[0033] The resulting polyolefin foam of the present invention is preferably “dimensionally stable.” Dimensional stability as defined herein is when the density of the foam does not deviate more than about 15% (i.e., the foam does not either shrink more than about 15% or expand more than about 15%) from the density of the polyolefin foam at the time of production. The density of the polyolefin foam at the time of production refers to its density within about 15 minutes, and preferably within 10 minutes, after the foam exits the die. This measurement is used in determining the “fresh” density-of the foam. To have a dimensionally stable product, the foam is typically measured after an aging process (e.g., for LDPEs from about 5 to about 30 days) and compared to its fresh density. It is recognized, however, that in the unlikely event that the foam at a later duration is not within about 15% of its fresh density, then it is not a dimensionally stable product. It is preferable that the foam does not deviate more than about 10% from its “fresh” density.

[0034] It is desirable for some polyolefin foams of the present invention to have a certain number of cells per inch. For example, it is desirable to have at least 20 or 25 cells per inch, and more preferably 30 cells per inch in both the machine and cross-machine directions for a foam that is about 100 mils thick.

EXAMPLES

[0035] Various blowing agents were tested with the results shown below in Tables 1 and 2. Specifically, several foams were made from comparative blowing agents and inventive blowing agent blends. It should be noted that in the various examples reported in Tables 1 and 2, the hardware was the same and operated in exactly the to same way, the only variable was the blowing agent blend. All of the inventive blowing agent blends included (a) isopentane and (b) either ethane, n-propane, isobutane, butanes (a combination of isobutane and n-butane), 1,1,1,2-tetrafluoroethane (HFC-134a), dimethyl ether, or combinations thereof. The comparative blowing agents did not include isopentane, but rather included either ethane, n-propane, isobutane, butanes (a combination of isobutane and n-butane), HFC-134a, or combinations thereof.

[0036] Each of the foams was made with low density polyethylene (LDPE) having a density of 0.920 g/cm3 and a melt index of 2.0 g/10 min at 190° C. In addition to the blowing agents and the LDPE resin, glycerol monostearate and talc were added in forming the foams. Glycerol monostearate, a stability control agent, was added at a concentration level of about 1 wt % of the total solids, and, talc, a nucleating agent, was added at a concentration level of about 0.1 to 1.0 wt % of total solids. Each of the foam samples, except Inventive Foams 5, 10, and 11, was made on a pilot line. The pilot line is a tandem extrusion line employing 2.5 inch and 3.5 inch single-screw extruders equipped with three ports in the primary extruder for injecting compressed fluids. The foaming temperature used in the pilot line was 107° C. and the foams were produced with a blow-up ratio of either 3.7 or 4.1. The blow-up ratio used to make each foam is identified in the footnotes to Tables 1 and 2 below. The extruded foam tube was stabilized over a mandrel, and then slit to form a sheet.

[0037] Unlike the other foams reported in Tables 1 and 2, Inventive Foams 5, 10 and 11 were made on a miniline. The miniline is a tandem extrusion line employing 1.25 inch and 1.5 inch single-screw extruders. Otherwise, the operating conditions of the miniline were the same as those of the pilot line described above.

[0038] The densities of the resulting foams were measured using ASTM D3575. The corrugation, if any, of the foam was determined as twice the amplitude of the sine wave that rides along the circumference of the extruded tube. The corrugation of the foams made on the miniline (Inventive Foams 5, 10, and 11) was not measured because of the small sample size. 1

TABLE 1 1,2,3
Blowing Agent (Composition in mol %) No. of
Sample No HFC- Density Gage Cells Corrugation
(Comp/Inv)4 Ethane n-C35 134a DME6 i-C47 Butanes8 i-C59 (lbs/ft3) (mils) (Per inch) (mils)
Comp 1 0 0 0 0 0 100 0 20 125 29 50
Comp 2 0 0 0 0 0 100 0 12 128 30 87
Comp 3 0 0 0 0 100 0 0 12 127 28 235
Comp 4 0 0 0 0 100 0 0 2.0 127 30 35
Inv 5 0 0 0 0 35 0 65 18 181 11 NA10
Inv 6 0 0 0 0 0 70 30 14 87 24 0
lnv 7 0 0 0 0 50 0 50 15 78 24 0
lnv 8 0 0 0 0 60 0 40 13 87 24 0
Inv 9 0 0 0 0 68 0 32 20 127 30 0
Inv 10 0 0 15 0 0 0 85 32 130 12 NA
Inv 11 0 0 30 0 0 0 70 35 130 15 NA
Comp 12 0 100 0 0 0 0 0 21 110 28 80
Comp 13 0 100 0 0 0 0 0 12 98 33 107
Inv 14 0 80 0 0 0 0 20 20 98 28 0
Inv 15 0 47 13 0 0 0 40 12 98 28 40
Inv 16 0 15 0 0 70 0 15 22 123 30 0
Inv 17 0 7 0 0 68 0 25 20 127 30 0
Inv 18 0 14 0 0 66 0 20 20 125 30 0
1Comparative Samples 1, 2, 12 and 13, and Inventive Samples 6-8 and 14-15 were made on the pilot line with a blow-up ratio of 4 1
2Comparative Samples 3 and 4, and Inventive Samples 9 and 16-18 were made on the pilot line with a blow-up ratio of 3 7
3Inventive Samples 5, 10 and 11 were made on the miniline with a blow-up ratio of 3
4“Comp” = Comparative Sample, “Inv” = Inventive Sample
5n-C3 = n-propane
6DME = Dimethyl ether
7i-C4 = Isobutane
8Butanes = A blend of 65 mol % isobutane and 35 mol % n-butane, generally known as A26
9i-C5 = Isopentane
10NA = Not Available

[0039] All of the above foams of Table 1 were dimensionally stable because their density did not deviate more than about 15% as compared to the foam density at the time of production. It was generally observed that the level of corrugation of the foam increased as the relative amount of isopentane was reduced or the relative amount of the co-blowing agent was increased.

[0040] Specifically, the corrugation of Comparative Foams 1-4 (a blowing agent of either isobutane or butanes) was greater than the corrugation of Inventive Foams 6-9 (a blowing agent of isopentane with either isobutane or butanes). Compare corrugation levels of 35-235 mils of Comparative Foams 1-4 to 0 mil of Inventive Foams 6-9. Similarly, the corrugation of Comparative Foams 12-13 (a blowing agent of n-propane) was greater than the corrugation of Inventive Foam 14 (a blowing agent of 80 mol % n-propane and 20 mol % isopentane). Compare corrugation levels of 80 and 107 mils of Comparative Foams 12 and 13, respectively, and 0 mil of Inventive Foam 14. It was surprising that the corrugation levels of Inventive Foams 6, 7-9 and 14 decreased significantly as compared to the corrugation levels of Comparative Foams 1-2, 3-4, and 12-13, respectively, by replacing a portion of the butanes, isobutane or n-propane with isopentane. 2

TABLE 21,2
Blowing Agent (Compostion in mol %) No of
Sample No. HFC Density Gage Cells Corrugation
(Comp/Inv)3 Ethane n-C34 134a DME5 i-C46 Butanes i-C58 (lbs/ft3) (mils) (Per inch) (mils)
Comp 19 10 0 0 0 90 0 0 20 102 28 100
Inv 20 10 0 0 0 65 0 25 20 96 28 80
Comp 21 25 0 0 0 75 0 0 20 102 30 75
Inv 22 25 0 0 0 45 0 30 21 94 30 60
Comp 23 40 0 0 0 60 0 0 20 96 28 60
Inv 24 40 0 0 0 30 0 30 21 95 28 60
Comp 25 0 0 15 0 85 0 0 12 87 40 73
Inv 26 0 0 15 0 70 0 15 19 123 30 0
Inv 27 0 0 13 0 0 57 30 13 108 26 42
Inv 28 0 0 0 15 70 0 15 12 127 30 167
Inv 29 0 0 0 15 70 0 15 19 118 30 105
Inv 30 0 0 0 7 68 0 25 20 125 30 0
Inv 31 0 0 0 14 57 0 29 20 122 29 0
Inv 32 0 0 0 13 66 0 21 21 128 29 0
1Comparative Sample 25 and Inventive Sample 27 were made on the pilot line wtth a blow up ratio of 4 1
2Comparative Samples 19, 21, and 23 and Inventive Samples 20, 22, 24, 26, and 28-32 were made on the pilot line with a blow up ratio of 3 7
3“Comp” = Comparative Sample, “Inv” = Inventive Sample
4n-C3 = n-propane
5DME = Dimethyl ether
6i-C4 = Isobutane
7Butanes = A blend of 65 mol % and 35 mol % n-butane, generally known as A26
8i-C5 = Isopentane

[0041] All of the above foams of Table 2 were dimensionally stable because their density did not deviate more than about 15% as compared to the density of the foam at the time of production. It was generally observed that the level of corrugation of the foam increased as the relative amount of isopentane was reduced or the relative amount of the volatile blowing agent was increased, as demonstrated in Inventive Foams 29 and 31. Specifically, the corrugation of Comparative Foam 19 (a blowing agent of 10 mol % ethane and 90 mol % isobutane) was greater than the corrugation of Inventive Foam 20 which replaced some of the isobutane with isopentane. Compare corrugation levels of 100 mils of Comparative Foam 19, and 80 mils of Inventive Foam 20. Similarly, the corrugation of Comparative Foam 21 (a blowing agent of 25 mol % ethane and 75 mol % isobutane) was slightly greater than the corrugation of Inventive Foam 22 in which some of the isobutane was replaced by isopentane. Compare 75 mils of Comparative Foam 21, and 60 mils of Inventive Foam. Additionally, the corrugation of Comparative Foam 25 (a blowing agent of isobutane and HFC-134a) was greater than the corrugation of Inventive Foam 26 which replaced some of the isobutane with isopentane. Compare corrugation levels of 73 mils of Comparative Foam 25, and 0 mil of Inventive Foam 26. It was surprising that the corrugation levels of Inventive Foams 20, 22 and 26 were less than the corrugation levels of Comparative Foams 19, 21, and 25, respectively, by replacing a portion of the isobutane with isopentane.

[0042] While the present invention has been described with reference to one or more particular embodiments, those skilled in the art will recognize that many changes may be made thereto without departing from the spirit and scope of the present invention. Each of these embodiments and obvious variations thereof is contemplated as falling within the spirit and scope of the claimed invention, which is set forth in the following claims.

What is polyolefin?
A polyolefin is a type of polymer with the general formulaₙ where R is an alkyl group. They are usually derived from a small set of simple olefins. Dominant in a commercial sense are polyethylene and polypropylene. More specialized polyolefins include polyisobutylene and polymethylpentene. They are all colorless or white oils or solids. Many copolymers are known, such as polybutene, which derives from a mixture of different butene isomers. The name of each polyolefin indicates the olefin from which it is prepared; for example, polyethylene is derived from ethylene, and polymethylpentene is derived from 4-methyl-1-pentene. Polyolefins are not olefins themselves because the double bond of each olefin monomer is opened in order to form the polymer. Monomers having more than one double bond such as butadiene and isoprene yield polymers that contain double bonds and are usually not considered polyolefins. Polyolefins are the foundations of many chemical industries.

How are polyolefins made?
The major processes for polyolefins’ production using Ziegler–Natta catalysts involve polymerization in the gas phase or in slurry, including bulk liquid monomer in the case of propylene. LLDPE is also produced via a solution process operating at temperatures in the range 130–250 °C. Polyolefins are produced using refined metallocene catalysts that have a constrained transition metal (generally a Group 4B metal such as Ti, Zr, or Hf) sandwiched between one or more cyclopentadienyl ring structures to form a sterically hindered polymerization site. Polyolefins, also called polyalkenes, are the largest class of commodity thermoplastics. They are polymers of simple alkenes such as ethylene, propylene, butenes, and pentenes, and copolymers thereof. The two most important polyolefins are polyethylene (PE) and polypropylene (PP).

What was the production of polyolefins in 2000?
Polyolefin fibre production by year 2000 was over 1.45 Mt (3.18 billion lb), while the polyester total was 1.76 Mt (3.87 billion lb).

How big is the global market for polyolefins?
Presently, the total world polyolefins capacity exceeds 120 million tons per year. Polyethylene (i.e., HDPE, LDPE and LLDPE) and polypropylene cover 60 % and 40 % of the total polyolefins production, respectively. The annual world-wide polyolefins market growth in the coming years is foreseen to be 4-6%.

What are the industrial applications of polyolefin fibres?
Polyolefin fibres, in particular slit films and monofilament, are used in industrial applications to manufacture ropes, cordages, agricultural nets, and FIBCs (flexible intermediate bulk containers).

Major Manufacturers of Polyolefin and Suppliers of Polyolefin in the World

  • LG Chem Ltd.
  • Constab Polyolefin Additives GmbH
  • Mc Tohcello (Malaysia) Sdn Bhd
  • Dow Europe GmbH
  • SK Chemicals
  • Deutsche Infineum GmbH
  • Bagla Polifilms Ltd.
  • Siam Synthetic Latex Co., Ltd.
  • Hoyer France
  • Lubrizol France

TOP 40 POLYOLEFIN PRODUCERS (POLYPROPYLENE, POLYETHYLENE & COPOLYMERS)

  • Alpek
  • Arkema
  • Borealis Group
  • Borouge
  • Braskem
  • Chevron-Phillips
  • CNPC
  • Dow
  • DuPont
  • Eastman
  • ENI
  • ExxonMobile
  • Formosa Plastics
  • Hanwha
  • Indorama
  • Ineos
  • KAP
  • Kayavlon Impex
  • LCY Chemical
  • LG Chem
  • Lyondellbasell
  • Mitsubishi
  • Mitsui Chemicals
  • Mol Group
  • Nova Chemicals
  • Petkim
  • Petroquim
  • Polyone
  • Quenos
  • Reliance
  • Repsol
  • Sabic
  • Sasol
  • Saudi Polymers
  • SCG Chemical
  • SEPC
  • Sibur
  • Sinopec
  • Sipchem
  • SK Global Chemical
  • Sumitomo
  • Tosoh
  • Total
  • TPC
  • UBE Industries
  • Westlake

Pentane, Hexane and Heptane Prices, Upstream, Downstream, Analytics & Forecasts
Junyuan Petroleum GroupDongying Liangxin Petrochemical Technology Development Limited Company | Address: No. 117, Guangqing Rd., Guangrao County, Dongying 257345 China.
Junyuan Petroleum Group is China’s largest manufacturer of blowing agents to the foam insulation markets. We have continued to grow with the development of next generation blowing agents, offering a variety of hydrocarbon products for the PIR, PUR and EPS markets, available in ISO tanks and drums. For more information, or for pricing please contact us: +86 178 1030 0898 Email: info@junyuanpetroleumgroup.com Web: www.junyuanpetroleumgroup.com.
China is the world’s largest buyer and drives prices in Asia and the global solvent trade. Our comprehensive news and pricing coverage of China and global solvent market is constantly updated by our raw material purchase, production and sales team of experts. Solvent markets can react to change quickly. It’s crucial for buyers, sellers and producers to stay alert and aware of what’s happening, both in their region and internationally. We help you stay abreast of change as it’s happening. We keep you informed of the current price and market position, so you can make the most of opportunities to trade or secure a deal.

n-Pentane Manufacturer

Industrial application of Pentane as a new welding and cutting fuel in China for the first time

The press conference on industrial application results of pentane as a new welding and cutting fuel was held at China Shipbuilding Group Guangzhou shipbuilding International Co., Ltd. This achievement is the first successful industrial application of pentane as a new welding and cutting fuel in China.

Pentane” usually refers to n-pentane, with the chemical formula of C5H12, which is the fifth member of alkanes. Pentane can be obtained from catalytic cracking and thermal decomposition of natural gas or petroleum, so pentane is also a by-product of oil refining process. In the past, it was mainly used to make low melting point organic solventsfoaming agents for plastic industry, artificial ice, etc. At the same time, pentane also has the characteristics of high combustion calorific value. After full combustion, pentane is safer and more environmentally friendly than conventional natural gas and other welding and cutting fuels. It is an ideal substitute for conventional fuels. Its high calorific value can also perfectly solve the problem of cutting thick ship plates and special steel plates in the shipbuilding industry.

It is understood that in order to promote the transformation and upgrading of product structure, Guangzhou shipbuilding international has undertaken the largest order for super large container ships with more than 16,000 containers in South China. The crack arrest steel applied to the deck, hatch enclosure and other key parts of the super large container ship has large thickness and high strength. It can achieve one-time forming by cutting with pentane with higher fuel value.

In three years, Guangzhou shipbuilding international and Shenghuo energy technology (Guangdong) Co., Ltd. have jointly developed a mobile blended light oil gasification system, which has solved the technical problems of stable gasification technology of liquid pentane welding and cutting fluid under normal temperature and pressure, pipeline transportation and pressure allocation of gasification equipment, and realized that pentane welding and cutting fluid can be supplied in the form of tank, and pentane welding and cutting fluid supply points can also be established through the gasification system, It provides a new green fuel choice for the industrial application of shipbuilding enterprises.

After application and inspection by a third-party testing agency, pentane welding and cutting fluid has obvious fuel saving effect, and the consumption of fuel and oxygen has been reduced by more than 30%; Cutting efficiency is close to or slightly higher than that of the existing natural gas; Compared with natural gas, it has obvious advantages in reducing slag hanging and preventing edge melting in medium and thick ship plate cutting.

A device for flame cutting and welding with pentane liquid as fuel comprises a jet suction cutting and welding torch, an evaporator and an oxygen cylinder. The oxygen joint of the jet suction cutting and welding torch is connected with a pressure regulating valve installed on the oxygen cylinder through a hose, and the gas joint of the jet suction cutting and welding torch is connected with the evaporator through a hose. The gas joint is equipped with a gas valve, and the evaporator is also equipped with a gas valve. The evaporator is equipped with an explosion-proof wire and a sieve plate, The screen plate is located at the bottom of the explosion-proof wire, and the lower part of the screen plate is equipped with a check valve and a silencing distributor. One end of the check valve is connected with the silencing distributor, and the other end is connected with the breathing valve located outside the evaporator through a pipe. A floating ball valve is also installed inside the evaporator, which is connected with the make-up valve outside the evaporator through a pipeline. After adopting the above device, compared with the gasoline cutting welder, the ignition performance is better and the stability is higher. The flame temperature of cutting and welding is up to 260 (RC ~ 280 (TC), and it is easy to adjust to carbonization flame, neutral flame and oxidation flame. When acetylene is burning, the carbonization flame has thick black smoke. The utility model does not have any black smoke, so the combustion ignition is easy, the flame is stable, and there is no backfire. The operation is simple. When cutting and welding is stopped, there is no smoke in the evaporator

It can stop working automatically because of negative pressure. The evaporator of the utility model has the advantages of simple structure, easy fabrication and low cost. Due to the negative pressure working condition, and an appropriate amount of explosion-proof wire is filled in the evaporator, the safety is very high. Practice has proved that the energy saving of the scheme of the utility model is more than 50% compared with that of acetylene gas and more than 25% compared with that of propane gas. Since the combustion temperature is about 400-500 ℃ higher than that of propane gas, steel plates or components with a thickness of less than 300mm can be cut smoothly. The steel plates cut by the combustion temperature are easier to process than the cutting edges cut by acetylene, and there is no slag at the bottom of the cutting edges, which is suitable for industrial needs. Figure 1 is the structural diagram of the device of the utility model. Specific implementation mode: the utility model is further described below in combination with the attached drawings. As shown in Figure L, this embodiment includes a jet suction cutting and welding torch L, an evaporator 2 and an oxygen cylinder 3. The oxygen joint of the jet suction cutting and welding torch 1 is connected with the pressure regulating valve 11 installed on the oxygen cylinder 3 through a hose. The gas joint of the jet suction cutting and welding torch 1 is connected with the evaporator 2 through a hose. The gas joint is equipped with a gas valve 12, and the evaporator 2 is also equipped with a gas valve 4. The evaporator is equipped with an explosion-proof wire 7 and a sieve plate 8, The screen plate 8 is located at the bottom of the explosion-proof wire 7. The lower part of the screen plate 8 is equipped with a check valve 9 and a silencing distributor 10. One end of the check valve 9 is connected with the silencing distributor 10, and the other end is connected with the breather valve 5 located outside the evaporator 2 through a pipe. A floating ball valve 13 is also installed inside the evaporator 2, and the floating ball valve 13 is connected with the make-up valve 6 outside the evaporator through a pipe. The specific working method of the utility model is as follows: when the regulating valve 11 on the oxygen cylinder 3 is opened and adjusted to the required pressure, the preheating valve 14 in the jet type cutting and welding torch L is opened, the jet suction device in the jet type cutting and welding torch 1 will generate negative pressure in the fuel channel, and then the gas valve 12 on the gas joint and the evaporator gas valve 4 are opened. The negative pressure will directly generate negative pressure in the evaporator 2 through the connecting pipe, and the breathing valve 5 is opened, The air flows upward through the breather valve 5, the check valve 9 and the silencing distributor 10, is evenly distributed through the sieve plate 8, and is violently mixed with the liquid amyl in the boiling state in the explosion-proof wire 7. The check valve 9 in the evaporator 2 is used to prevent the internal liquid from leaking out when the evaporator 2 is operating accidentally. Due to the low latent heat of vaporization and low boiling point of pentane, it can quickly absorb the heat of the external environment of the evaporator 2 made of metal and evaporate into a mixture of pentane gas and air with high concentration under the action of negative pressure. Under the action of negative pressure, pentane is continuously pumped into its injection and suction device by the injection and suction torch 1 and mixed with oxygen in proportion to form a fuel gas which is injected into the nozzle for combustion to achieve the purpose of cutting and welding. The pentane liquid can be filled by opening the make-up valve 6, which is sucked from the fuel storage tank to the evaporator 2. When the liquid level reaches a certain height, it will be automatically closed by the float valve 13. If ioo cutting torch is adopted for the above-mentioned jet suction cutting torch, the oxygen pressure of the cutting torch is 0.6MPa, the negative pressure of the gas interface is about 0.04 ~ 0.05Mpa, and the evaporation capacity of pentane liquid is 0.26 ~ 0.3l/h. The flame of the cutting torch can be easily adjusted to neutral flame, and the flame temperature is 2600 ° C ~ 2800 ° C, which can smoothly cut 100mm thick steel plate; If No. 8 jet suction welding torch is used for jet suction cutting torch 1, the required oxygen pressure is 03mpa, the negative pressure of gas interface is 0.035 ~ 0.04MPa, and the evaporation capacity of pentane liquid is 0.1 ~ 0.12l/h. The flame of the cutting torch can be easily adjusted to oxidation flame, neutral flame and carbonization flame, The flame temperature is 2600’c ~ 280 (TC, welding can be carried out smoothly. To sum up, the advantages of the utility model are: 1. The ignition performance of the utility model is better than that of the gasoline cutting welder, and the stability is high. The original propane injection cutting torch and welding torch do not need to be matched with the specially manufactured cutting torch or welding torch, which can save the enterprise’s equipment reinvestment investment and facilitate the purchase of vulnerable parts; 2. The safety is high, even if the cutting torch or welding torch is broken or accidentally damaged when working, it will not produce Danger caused by leakage of raw gas. Since the evaporator is filled with explosion-proof wire according to the standard, no explosion will occur; 3. The energy-saving effect is remarkable, and the production cost is greatly reduced; 5. As a by-product of petroleum industry and a class B green fuel, the waste gas after combustion is harmless to human body, which not only solves the problem of by-product of petroleum industry, but also ensures the safety and health of users; 6. The efficiency of cutting and welding has been improved. The cutting speed is slightly faster than that of acetylene. It is easy to operate and master. It is convenient to carry out construction outside. The utility model can not only be applied to the cutting of steel and the welding of metal, but also can be widely applied to glass fusion to replace the commonly used propane gas and natural gas, and has remarkable safety and energy-saving effects.

1. The device for flame cutting and welding with pentane liquid as fuel includes a jet suction cutting and welding torch (1), an evaporator (2) and an oxygen cylinder (3), which is characterized in that the oxygen joint of the jet suction cutting and welding torch (1) is connected with the pressure regulating valve (11) installed on the oxygen cylinder (3) through a hose, and the gas joint of the jet suction cutting and welding torch (1) is connected with the evaporator (2) through a hose, wherein the gas joint is provided with a gas valve (12), and the evaporator (2) is also provided with a gas valve (4), An explosion-proof wire (7) and a sieve plate (8) are installed inside the evaporator, the sieve plate (8) is located at the bottom of the explosion-proof wire (7), a check valve (9) and a silencing distributor (10) are installed below the sieve plate (8), one end of the check valve (9) is connected with the silencing distributor (10), and the other end is connected with the breather valve (5) located outside the evaporator (2) through a pipe.

Request a Quote

Request a Quote

for Pentanes, Hexanes, Heptanes, Butanes and more

I will be back soon

Request a Quote
If you would like to receive a quote to purchase a product or you would like more information, please message us on WhatsApp.