Category Pentane

The Boiling Points of n-Pentane and Isopentane: An Analysis Introduction

n-Pentane and isopentane are two isomers of pentane, a hydrocarbon with five carbon atoms and 12 hydrogen atoms. They have the same molecular formula, C5H12, but different structures. n-Pentane has a straight chain of five carbon atoms, while isopentane has a branched chain with four carbon atoms in a row and one carbon atom attached to the second carbon atom. The difference in structure affects their physical properties, such as boiling point. The boiling point of a substance is the temperature at which it changes from liquid to gas. In this report, we will compare the boiling points of n-pentane and isopentane and explain the factors that determine them.

Results and Discussion

The data shows that the boiling point of n-pentane is higher than that of isopentane. According to the web search results, the boiling point of n-pentane is 36.1°C, while the boiling point of isopentane is 27.9°C. This means that n-pentane requires more energy to vaporize than isopentane. The reason for this difference is the intermolecular forces between the molecules. Intermolecular forces are the attractions between molecules that hold them together in a liquid or a solid. The stronger the intermolecular forces, the higher the boiling point.

The main type of intermolecular force in n-pentane and isopentane is the van der Waals force, which is a weak attraction between the temporary dipoles of the molecules. A dipole is a separation of positive and negative charges in a molecule. A temporary dipole is a dipole that forms when the electrons in a molecule are unevenly distributed at a certain moment. The temporary dipole of one molecule can induce a temporary dipole in another molecule, creating a van der Waals force between them.

The strength of the van der Waals force depends on the size and shape of the molecules. The larger and more elongated the molecule, the stronger the van der Waals force. This is because a larger and more elongated molecule has more surface area for the temporary dipoles to interact. n-Pentane has a larger and more elongated molecule than isopentane, as shown in the figure below.

![n-pentane and isopentane structures]

Therefore, n-pentane has stronger van der Waals forces than isopentane, and thus a higher boiling point.

Conclusion and Recommendations

In conclusion, we have analyzed the boiling points of n-pentane and isopentane and found that n-pentane has a higher boiling point than isopentane due to the stronger van der Waals forces between its molecules. This analysis demonstrates the importance of molecular structure in determining the physical properties of substances. We recommend that you use this knowledge to understand the behavior of other hydrocarbons and their isomers.

n-Pentane product introduction

n–Pentane belongs to the fourth generation of hydrocarbon foaming agent, and is currently the best substitute product for chlorofluorocarbon foaming agent (141b). With the advantages of energy saving, environmental protection and high performance, it is widely used in cold storage insulation panels, Animal husbandry and fungus breeding plates, refrigerated vehicle insulation materials, pipeline insulation materials and other fields.

n-Pentane (n-Pentane) chemical formula C₅H₁₂, the fifth member of alkanes. There are 2 isomers of n-pentane: isopentane (boiling point 28°C) and neopentane (boiling point 10°C), the term “pentane” usually refers to n-pentane, its linear isomer.

Uses of n-Pentane: 1. Used as a low boiling point solvent, foaming agent in plastic industry, also used with 2-methylbutane as automobile and aircraft fuel, artificial ice, anesthetic, and synthesis of amyl alcohol and isopentane.

n-Pentane Loading Site
n-Pentane Loading Site

Top 5 Uses of Pentane

Top 5 Uses of Pentane

Pentane is a cost-effective liquid that has several different industrial and laboratory applications.

  1. Laboratory Solvents

They are the most volatile liquid alkanes (at room temperature). Because of this, they are commonly used in laboratories as solvents. Although, due to their lack of functionality and non-polarity, they only dissolve other nonpolar and alkyl-rich compounds. Pentanes are miscible with other solvents like ethers, aromatics, and chlorocarbons.

  1. Chromatography

Pentane is commonly used in chromatography – which is a laboratory technique to separate components in a mixture. The mixture is passed in a suspension or solution through a medium where the components each move at different rates.

  1. Blowing Agent

Pentane is used as the primary blowing agent in the production of foams like polystyrene. A blowing agent is a substance that is capable of producing a cellular structure through a foaming process. These foams are often used as insulating material in refrigerators and heating pipes

  1. Binary Fluid

Because of its low boiling point, pentane is used in geothermal power stations as a binary fluid.

  1. Industrial Ingredient Uses

Due to its ready availability and low cost, pentane is also used as a solvent in many common products like pesticides. It can also be used in making other chemicals, plastics, and low-grade thermometers. Acid-catalyzed isomerization can produce isopentane, which can be used in making fuels.

Stop saying you don’t know how to name chemicals!

In 1993, the International Union of Pure and Applied Chemistry (IUPAC) issued its final nomenclature for organic compounds. Nomenclature (Nomenclature), as the name suggests, is the method of naming compounds. If we want to give each organic compound a name, we obviously cannot write all possible organic compounds and their names into a table. So we need to write a few very concise rules to help us quickly name even a compound that has never been seen before.

Naming structure The naming structure of organic compounds can be basically split into prefix (Prefix) and suffix (Suffix). The prefix generally indicates how many carbon atoms are in the compound. The suffix represents which functional groups (Functional Group) are contained in the compound. In other words, the suffix represents which organic compound this organic compound belongs to, such as alkanes (Alkane), alkenes (Alkene), alcohols (Alcohol) and so on. There is nothing to say about the prefix. It is purely a one-to-one table: 1 Carbon: Meth- 2 Carbons: Eth- 3 Carbons: Prop- 4 Carbons: But- 5 Carbons: Pent- 6 Carbons: Hex- 7 Carbons: Hept- 8 Carbons: Oct- 9 Carbons: Non- 10 Carbons: Dec- 11 Carbons: Undec- 12 Carbons: Dodec- … In IGCSE chemistry, we rarely see names above 7 Carbons. So everything from Meth- to Hex- must be memorized. No way, just memorize it by rote. The prefixes are only associated with carbon atoms, so you don’t need to count hydrogen atoms. You see several carbon atoms, and its prefix is the corresponding prefix. Let’s take an example.

The chemical formula of this compound is CH4, what is its prefix? Let’s count the carbon atoms, there’s only one, so by our correspondence, it’s Meth-.
The chemical formula of this compound is C4H10. What is its prefix? We counted four carbon atoms, so by our correspondence, it’s But-.
The third carbon atom from the left to the right has a corner. But that’s okay, it doesn’t stop us from counting carbon atoms. The chemical formula of this compound is C5H12, and because it has five carbon atoms, it is prefixed with Pent-.

Now that the prefixes are finished, let’s talk about suffixes. If there are only Carbon-Carbon single bond and Carbon-Hydrogen single bond in a compound, then it belongs to alkane (Alkane). Let’s take a look at the name Alkane. It can be split into Alk- prefix and -ane suffix. The Alk- prefix represents a comprehensive compound category. It does not specify the length, but it is just a placeholder. So of course, -ane is the common suffix of this kind of compound.

We still see our three previous examples. Take a closer look, in each compound, each atom is connected with a single bond (a horizontal line), so we can say that all three of them belong to Alkane, and their suffixes are all -ane. So we have a prefix, and we have a suffix, and we can name it. The first compound has the prefix Meth- and the suffix -ane, so the full name is Methane. The second compound has the prefix But- and the suffix -ane, so the full name is Butane. The third compound has a prefix of Pent- and a suffix of -ane, so its full name is Pentane. simple right?

Knowledge Sharing – The Importance of Blowing Agents in Lost Foam Casting

It is absolutely impossible to obtain high-quality lost foam castings without high-quality patterns. STMMA is an expandable copolymer resin bead specially used for the pattern material of lost foam casting. Pentane is mainly used as the foaming agent, and the content of pentane directly affects the quality of the mold. The main process of pentane control: pre-expansion – bead curing – die drying In the process of pre-expansion, on the one hand, it is the process of expanding and foaming the beads, and on the other hand, it is the main process of pentane loss. Pentane is the basis for pre-expanding and molding, but after the molding is completed, it is hoped that the pentane can be completely and completely dissipated. Copolymerized beads with less than 9.5% of the original bead pentane can shorten the heating time during pre-expanding, and it is recommended to control it at about 40s; Control it around 60s. The structure of the beads is damaged if the pre-expansion time is long, and too much foaming agent is consumed; thus affecting the quality of the secondary molding. STMMA storage method: low temperature storage ≤ 10 degrees. When it is not used up after opening, remember to re-tighten the bag, and keep the barrel covered at low temperature to prevent the loss of pentane. Bead aging The newly foamed beads have negative pressure inside and are easy to collapse. They must be put into the aging warehouse for aging treatment, allowing air to enter the interior of the beads to achieve internal and external balance. Aging is a process for the pre-released beads to reach stability. During the stabilization process, the beads change: most of the water evaporates, the beads recover a certain degree of elasticity, and the content of pentane decreases. When the pentane content is less than 9.5%, the curing time of the pre-haired beads is generally controlled to be 12-48 hours. When the content of pentane is greater than 9.5%, the curing time of the pre-haired beads is generally controlled at 3-4 days. In this curing process, the pentane content is controlled at 7%-8% to reduce the possibility of expansion bubbles in the later stage after bead molding. At this time, the mold is filled evenly, easy to form, the surface of the mold is high, strong, and the beads are fused with each other. Die shrinkage is stable and consistent. When the pentane content of the beads is less than 5% after bead curing, it is very difficult to form a die, the surface collapses, shrinks, and the uneven surface is not smooth.

Molds are produced when the pentane content is less than 5%
Die made with pentane content of 7%-8%

The higher the die drying temperature, the faster the pentane volatilizes. The die pieces are placed in the air for natural aging, and the pentane and water content evaporate slowly. According to my many years of production experience: under normal circumstances, after one day of curing, the dies are sent to the drying room at a temperature controlled between 45-50 degrees, and sent to the pentane content after drying for 4-5 days. If the pentane content is greater than 5%, it can continue to be cured at high temperature, and it can be used when it is less than 5%. When the pentane content of the pattern is greater than 5%, the dip-coated pattern is wrapped by the coating, even if the high-temperature drying gas is difficult to volatilize. During the pouring process, the amount of gas is too large, which causes the imbalance of internal and external air pressure to cause reverse spray and collapse of the box. Castings produce porosity, air separation, and incompleteness lead to castings being scrapped.

n-Pentane Price Update on 03.04.2023

n-Pentane n-Pentane price update, the latest n-Pentane price in the Chinese market (03.04.2023). Today’s US Dollar/CNY exchange rate: 1 dollar=6.88 CNY.Latest FOB price (CNY/MT) 8,100. Up 50, PCT Change 0.6%n-PentaneSynonyms: PentaneLinear Formula: CH3(CH2)3CH3CAS Number: 109-66-0Molecular Weight: 72.15In March, the FOB price of n-Pentane was estimated to be around 1,180-1,195 USD/MT, up around 15-20 USD/MT from February levels. In the fourth quarter of 2022, offers increased significantly, mostly in the Chinese market.For more information about the price of n-Pentane and the price change of n-Pentane, please follow the quotation column of the market center of Junyuan Petroleum Group’s n-Pentane price channel: n-Pentane priceOverviewJunyuan Petroleum Group is one of China’s largest Pentane, Hexane, Heptane and Butane companies manufacturing a vast range of solvents and chemicals. We have a proudly earned solid 17-year track record in both the domestic and international markets. Our company is headquartered at our world-class manufacturing facility in Dongying and Dushanzi, ChinaWebsite: JunyuanPetroleumGroup.comIndustry: Chemical ManufacturingCompany Size: 501 – 1,000 employeesHeadquarters: DongyingТуре: Public CompanyFounded: 2006Specialties: Solvents and Chemicals

Friday, 22-JAN-22: No change in prices of Pentane, Hexane and Heptane series

Friday, 22-JAN-22: There was no change in prices of Pentane, Hexane and Heptane series products today.

For products with small orders, we can provide you with flexitank packaging. The advantages of packaging are as follows: 1. Convenient loading and unloading, door-to-door service, and multimodal transport such as highway, railway and waterway can be adopted. 2. A wide range of suitable chemical varieties. 3. Convenient transshipment, suitable for multimodal transport.

What is a Flexitank?

The Flexitank is a package that is used for the storage and transportation of non-hazardous liquid products and is intended for installation in 20ft ISO shipping containers.

Using Flexitank will reduce packaging, storage and transportation costs by a sizeable margin. This is due to its relatively low unit cost and the convenience of positioning ,speed of loading and efficient exploitation of loading weights.

Very Low positioning costs
No cleaning costs,No disposal costs
Cost effective and considerably cheaper than tank containers,drums and IBC’S
Can carry 40% or more cargo than drum and 50% or more than by bottles
Deliveries are door- to- door • Quick loading compared to drums and IBCs
Low labour for handling,filling and loading
No need for forklift to load or unload container
No need for intermediate bulk storage
Available in remote areas
Clean and environmentally friendly
Low weight of Flexitank-so higher payloads possible
20 ft. Container payload 15% higher than IBCs Container payload 44% higher than drums
No demurrage on Flexitank only on container.No return loads needed

Bead foam microstructure and processing

Pentane, n-

PARAMETERUNITVALUE
GENERAL INFORMATION
NamePentane, n-
CAS #109-66-0
IUPAC namepentane
Common nameamyl hydride
Empirical formulaC5H12
FormulaCH3(CH2)3CH3
Molecular massdaltons72.17
RTECS numberRZ9450000
Chemical categoryaliphatic hydrocarbon
EC number203-692-4
Product contentsn-pentane, 95-100 wt%
PHYSICAL PROPERTIES
StateL
Odorgasoline-like
Odor thresholdppm400
Colorcolorless
Boiling point°C36.1
Freezing point°C−129.73
Refractive index at 20°C1.3580
Specific gravityg cm−30.630
Specific gravity temperature°C15.6
Vapor densityair=12.50
Vapor pressurekPa68.3
Vapor pressure temperature°C25
Evaporation ratebutyl acetate=112.0
Evaporation rateether=11.0
Enthalpy of vaporizationkJ mol−125.79
Enthalpy of vaporization temperatureK309.2
Polarity parameter, ET(30)kcal mol−131.1
CorrosivityN
Molar volumecm3 mol−1116.0
Kauri butanol number26.0
Coefficients of Antoine equationcoefficient A3.9892
coefficient B1070.617
coefficient C−40.454
Temperature range of Antoine equation°C268.7 to 341.4
pH
ViscositymPas (cP)0.225
Viscosity temperature°C25
Surface tension at 20°CmN m−115.48
Solubility in water at 20°Cmg kg−139
Heat of combustion at 25°CMJ kg−148.81
Specific heat at 25°CkJ K−1 mol−1167.19
Thermal conductivity at 25°CW m−1 K−10.12
Coefficient of thermal expansion10−4 °C−1 (K−1)10.0
Hildebrand solubility parameter(MPa)1/214.36
Hansen solubility parameters, (MPa)1/2dD14.5
dP0.0
dH0.0
Henry’s law constantatm/m3-mol−11.27E+00
Relative permittivity1.84
Electrical conductivitypS m−11.1
HEALTH & SAFETY
NFPA classificationFlammability4
Health1
Reactivity0
UN risk phrases, RR12,R51/53,R65,R66,R67
US safety phrases, SS9,S16,S29,S33,S61,S62
UN number1265
UN/NA hazard class3
UN packaging groupII
DOT classUN 1265 PENTANES, 3, II
TDG class3, II
ICAO/IATA class, packaging groupUN 1265 PENTANES, 3, II
IMDG class, packaging groupUN 1265 PENTANES, 3, II (<−40°C), Marine Pollutany, (N-Pentane)
Proper shipping namepentanes
Autoignition temperature°C243
Flash point°C<−40
Flash point methodTOC
Explosion limit, lowerwt%1.42
Explosion limit, upperwt%7.80
Threshold limiting value – TWA 8h, ACGIHmg m−31770
Threshold limiting value – TWA 8h, ACGIHppm600
Threshold limiting value – TWA 8h, NIOSHmg m−3350
Threshold limiting value – TWA 8h, NIOSHppm120
Maximum exposure concentration NIOSH-IDLHmg m−345000
Maximum exposure concentration NIOSH-IDLHppm1500
Maximum concentration, any time, ACGIHppm600
Maximum concentration, any time, NIOSHmg m−31800
Maximum concentration, any time, NIOSHppm610
Maximum concentration, any time, OSHAmg m−31800
Maximum concentration, any time, OSHAppm600
Maximum concentration, 15 min., ACGIHmg m−32210
Maximum concentration, 15 min., ACGIHppm750
Maximum concentration, 15 min., NIOSHmg m−31800
Maximum concentration, 15 min., NIOSHppm610
Maximum concentration, 15 min., OSHAmg m−32950
Maximum concentration, 15 min., OSHAppm1000
Animal testing, acute toxicity, Rat oral LD50mg kg−12000
Animal testing, acute toxicity, Rat inhalation, LC50ppm110000/2H mus
Route of entryInh, Ing, Con
IngestionHarmful if swallowed may cause lung damage.
Skin irritationRepeated exposure may cause skin dryness or cracking.
Eye irritationMay cause eye irritation.
InhalationInhalation vapors may cause drowsiness and dizziness.
First aid: eyesFlush eyes with water while holding eyelids open. Rest eyes for 30 minutes. If redness, burning, blurred vision, or swelling persist, transport to the nearest medical facility for additional treatment
First aid: skinRemove contaminated clothing. Flush exposed area with water and follow by washing with soap if available.
First aid: inhalationRemove to fresh air. If rapid recovery does not occur, transport to nearest medical facility for additional treatment.
Target organsRspSys,Eye,Skin,CNS,Kdny
Carcinogenicity IARCN
Carcinogenicity NTPN
Carcinogenicity OSHAN
Mutagenic propertiesN
ECOLOGICAL PROPERTIES
Aquatic toxicity, Daphnia magna, 48-h LC50mg l−12.7
Aquatic toxicity, Rainbow trout, 96-h LC50mg l−14.3
Theoretical oxygen demandg g−13.56
Bioconcentration factor2.35
Biodegradation probabilitydays
Hydroxyl rate constantcm3 molecule−1 s−13.94E-12
Montreal protocolN
Partition coefficientlogKow3.39
Urban ozone formation potentialC2H4=10.11
Soil absorption constant1.91
UV absorptionnm<195
USE & PERFORMANCE
Manufacturergeneric

Pentane is introduced to suspension-polymerised polystyrene (PS) beads. Molecular weights in the range of 150,000–250,000 are used. The spherical beads are sieved to a narrow range of diameters, so are not monodisperse. PS beads are allowed to absorb up to 8% by weight of pentane, which is a plasticiser, reducing the glass transition temperature from 100°C to about 60°C . Cigna et al. (1986) used an ultramicrotome to section the pentane-containing beads, and then transmission electron microscopy. Microvoids within them are the sites of the later cell expansion. The surfaces of the beads are coated, typically with less than 0.5% of calcium stearate, to prevent agglomeration.

Expanded polypropylene (EPP) goes through a process of extrusion foaming as small diameter rod, then pelletised into beads, much as most thermoplastics are pelletised prior to injection moulding. Hence the initial production is as described in the last chapter, and high melt strength polypropylene (PP) grades must be used. The blowing agent is probably isopentane or CO2. Some of the beads have a solid PP outer layer, and their average density is lower than the final EPP mouldings (Beverte, 2004), a disadvantage compared with EPS in that bulky material must be transported to the site of moulding.

Resin and Asphaltene Gravimetric Determination
A 100 mL quantity of n-pentane is added to a pre-weighed sample of approximately 5 g of oil. The flask is shaken well and allowed to stand for 30 min [27,28]. The sample is filtered through a 0.45-μm membrane using minimum rinsing with n-pentane. The precipitate is allowed to dry and then weighed. The weight of the precipitate as a fraction of the initial oil sample weight is reported as the percentage asphaltenes.

The filtrate from the precipitation, the “maltene” fraction, is recovered and made up to 100 mL with n-pentane. A 15-g, 1-cm diameter column of activated silica gel is prepared. The top of the column is protected by a 1-cm layer of sodium sulfate. A 5-mL aliquot of the maltene fraction is loaded onto the column. A 60-mL volume of 1:1 (v:v) benzene:hexane is eluted through the column and discarded. A 60-mL volume of methanol, followed by a 60-mL volume of dichloromethane is eluted through the column and combined. The methanol/dichloromethane fractions are reduced by rotary evaporation and blown down to dryness under nitrogen. The mass fraction of this dried eluent, compensating for the volume fraction used, is reported as the percentage of resins in the sample.

Pentanes

PRODUCT DESCRIPTIONPurity Percent
n-Pentane99%, 95% 
Isopentane  99%, 96%
n- Pentane / Isopentane Blend20-80%, 30-70%
Pentane Products List
n-Pentane and applications

n-Pentane, 99%, n-Pentane, 95%
CAS NO 109-66-0
Applications: Blowing Agents, Plastics Industry, Geothermal Energy, Personal Care Products, Gasoline

For sales inquiries and questions please email us at: info@junyuanpetroleumgroup.com or WhatsApp us at: +86 178 1030 0898

Isopentane #i-Pentane #Pentanes #Pentane #Iso-Pentane #geothermal #powerplant #expansion #geothermalenergy #energystorage #renewableenergy #laboratorysolvents #solvents #Pentane Blends # Blowing Agents #Plastics Industry #Geothermal Energy #Personal Care Products #Gasoline

Why is pentane used as blowing agent?

Why is pentane used as blowing agent? Pentaneblown foams have another advantage: better dimensional stability due to the fact that pentane does not condense as much as HCFC-141b at temperatures normally experienced by the foam in use. The condensation of HCFC-141b causes the cells to shrink and expand on a cyclical basis, reducing dimensional stability.”

Blowing agents are used to decrease the density of the polymer, typically by 40–60% with loading levels of 0.5–20.5% by weight on the amount of polymer.

n-Pentane, Isopentane, Pentane Blends

Releated Terms:

Extrusion, Carbon Dioxide, Flame Retardant, Polyurethane Foam, Polyurethanes, Resin, Injection Moulding, Foaming Agent, Porosity

Request a Quote

Request a Quote

for Pentanes, Hexanes, Heptanes, Butanes and more

I will be back soon

Request a Quote
If you would like to receive a quote to purchase a product or you would like more information, please message us on WhatsApp.