Tag Cyclopentane

n-Heptane for Synthesis

n-Heptane for Synthesis

Normal Heptane , Heptyl hydride

Product Size 137kg/drum, 16MT/ISO Tank
Grade Extra Pure
Purity 99% CAS No. 142-82-5
Molecular Formula C7H16 Molecular Weight 100.21
H.S. Code 29011000 Shelf Life 60 months


Specifications

Minimum Assay 99.0%
Wt. per ml at 20°C 0.680-0.685g
Refractive Index 1.3880-1.3885

CERTIFICATE OF ANALYSIS
Name of the Sample : n – Heptane for Synthesis
Batch No. : 33989563
Date of Mfg : July 2022
Date of Exp : July 2025
Register No. : 2021-22
Qty of Sample : 500ml
Date of Analysis : July 2022
S. No Test Parameters, Observed Values, Standard Values
1. Description, Passes, A clear colorless liquid
2. Assay (GC area %), 99.35%, Min.99.0%
3. Wt. per ml at 20°C, 0.683gm, 0.680-0.685g
4. Refractive Index, 1.387, 1.387-1.388 (20°C; 589 nm)


Oil Production by Hexane Solvent Extraction

Oil Production by Hexane Solvent Extraction

Solvent extraction consists of a sequence of four operations:
(1) physical removal of oil from the seed in the extractor;
(2) desolventizing-toasting of the de-oiled seeds, often combined with drying and cooling of the meal;
(3) distillation to remove the solvent from the extracted oil;
(4) recovery of the solvent, for reuse in the extractor. The solvent is almost always hexane, which satisfies the technical, economical, and operational needs of all oil millers. Several other solvents have been studied but their disadvantages are such that they cannot compete with hexane, which has many compensatory advantages despite being flammable (Dijkstra and Segers 2007).

The industry generally makes a distinction between two types of extractor: percolation type and immersion type. The percolation process, also known as the continuous extraction process, is based upon the principle of uninterrupted passage of the solvent through the bed of oleaginous material; the oil is thus dissolved in the solvent and carried away. In the immersion process, the entire load of seeds is immersed in solvent. The system is static, so it needs to be stirred to balance the differences in the oil–solvent concentration. Stirring inevitably causes abrasion of the extraction material, so the mixture needs subsequently to be filtered out. This method is used when it is not easy to extract the oil from the matrix. Oil extractors can also be classified on the basis of other different criteria, such as basket or belt operation, rotary or straight, or other shapes, full or partial countercurrent operation, etc.; however, it must be underlined that today the systems available in the market are becoming more and more similar to each other (Fils 2000). The oil-saturated solvent obtained from the extraction process is referred as “miscella.” All commercial extractors are today based on the principle of countercurrent extraction. Fresh solvent encounters previously extracted material, whereas new seeds, flakes, or collet encounter solvent already containing some oil. This method is able to remove a high level of oil using a little solvent quantity (Anderson 2011). Temperature is one of the key variables to keep under control and to optimize the extraction process. The boiling point of hexane is about 69°C near ambient pressure. However, it becomes an azeotrope in the presence of water or steam, with a boiling temperature of 61.6°C. It would be desirable to operate close to the temperature point of this azeotrope; it is the hottest temperature reachable before hexane evaporation, thus it would allow to obtain the lowest viscosity of both solvent and oil and consequently to promote a rapid oil solubilization (Anderson 2011). The length of the extraction process is determined by several factors that affect the contact time between the solvent and the oleaginous material, required for a best extraction yield. Among these factors, the oil concentration, the viscosity of solvent and oil, the shape and size of solid particles and their resulting specific internal structure after pretreatment, are essential to calculate the residence time of the solvent in the extractor. Simulations reported that the greatest amount of oil is extracted during the first minutes, being the oil less accessible to the solvent in the last phase due to equilibrium phenomena (Anderson 2011).

After oil extraction, the meal contains 25%–35% of solvent, which must be evaporated and recovered for reuse (Nagaraj 2009). On the other hand, the de-oiled meal is toasted to reduce anti-nutritional factors such as glucosinolates or trypsin inhibitors, which act as antigrowth factors in monogastric animals if the meal is incorporated into animal feed. Moreover, the meal should be dried to minimize the risk of biological contamination and cooled close to room temperature to remain flowable during storage and transport. The process known as desolventizing, toasting, drying and cooling process (DTDC), invented by Schumacher (1985), combine all these operations in a single piece of equipment (Kemper 2011). The most widely used equipment today is the vertical stack consisting of a number of chambers separated by trays. The meal enters at the top and is conveyed downward while being mixed by agitating sweeps anchored to a central rotating shaft. The heat needed for increasing meal temperature and evaporating the solvent is supplied by steam, which is directly and indirectly introduced into the meal via the trays. When indirectly heated using a steam jacket, hexane will evaporate and the temperature will not rise above the boiling point of hexane. Moreover, in this way, live steam will not condense on the flakes, thus allowing a control of the moisture level during the next steps. The reduced moisture, however, provides less protection against overheating, which may lead to a significant decline of the nutritional value during toasting. Subsequently, the material is heated with live steam, which will condense and raise the temperature above the boiling point of hexane that will be completely vaporized. Additionally, the condensed steam humidifies the meal to a point where a good toasting is possible. In the next chamber, the desolventized meal is cooled and dried by air. Heated air is passed over the material to dry it, at the same time, outside air is blown through the material to cool it. Furthermore, the hot air, while drying, also cools the material and the cold air, while cooling, also dries the material (Kemper 2011).

The miscella leaves the extractor with a 25%–30% oil content, which is separated from the solvent by evaporation of the latter. The miscella evaporator, also referred to as economizer, utilizes the latent heat contained in the vapors leaving the desolventizer to evaporate the solvent till an oil concentration of 65%–75%. The concentrated miscella may then undergo to a second step of solvent evaporation, which utilizes the sensible heat of the condensate steam coming from the DTDC. The residual hexane is then removed by vacuum stripping. The evaporated solvent must be cooled in a condenser and cleaned into a mineral absorption system before being reused in the extractor (Dijkstra and Segers 2007).

Junyuan Petroleum Group donated money to help Heze fight epidemic

Junyuan Petroleum Group donated money to help Heze fight epidemic

The epidemic situation is merciless, but people are sentient and work together to tide over the difficulties. In August, the situation of epidemic prevention and control in Heze City was extremely severe. In order to help Heze City win the sniper battle of epidemic prevention and control, on August 2, Junyuan Petroleum Group, the parent company of Dongying Liangxin Petrochemical Technology Development Limited Company actively supported Heze City and donated 50,000 yuan to the Red Cross Society of Heze City for the prevention and control of COVID-19 epidemic in Caoxian county and Mudan District. It practiced the responsibilities and responsibilities of private enterprises with practical actions, and gathered the positive energy of working together to overcome difficulties.

In recent years, Junyuan Petroleum Group, the parent company of Dongying Liangxin Petrochemical Technology Development Limited Company, has made positive contributions to social welfare undertakings while achieving rapid development. Participated in the educational activities organized by Dongying Civil Affairs Bureau, and donated 100,000 yuan at one time; Participated in the targeted poverty alleviation and Charity Day donation activities in Dingzhuang Town, Guangrao County, and donated 130,000 yuan; In response to the targeted poverty alleviation activities of Guangrao County Charity Federation, donated 200,000 yuan; In the year of COVID-19, the company donated 500000 yuan to Dingzhuang sub district Charity Federation and donated prevention and control materials to surrounding villages and epidemic prevention and control points under the condition that its production and operation were seriously affected.

Next, Junyuan Petroleum Group, Dongying Liangxin Petrochemical Technology Development Limited Company’s parent company, will continue to practice the responsibilities and responsibilities of private enterprises and make positive contributions to social development.

The company is participating in the enterprise forum,Dongying Liangxin Petrochemical Technology Development Limited Company

The Group of Companies Participated in the Symposium on a Financial Project

The Junyuan Petroleum Group of Companies participated in the Symposium on project docking between financial leasing companies and small and medium-sized enterprises

On the morning of July 29, Dongying local financial supervision bureau held a symposium on the project docking between financial leasing companies and small and medium-sized enterprises. At the symposium, a number of financial leasing companies in Shandong Province were invited to carry out project face-to-face exchanges and interactions with small and medium-sized enterprises to carry out financing docking. Che Xiaojing, executive deputy general manager of the asset management company, attended the meeting and introduced the company’s projects.

The meeting pointed out that all financial leasing companies should take serving the real economy as the starting point and foothold, put forward reasonable financing plans and suggestions according to the financing needs of enterprises, help enterprises finance, and achieve steady development in the process of promoting local economic development. Small and medium-sized enterprises should further understand and be familiar with the financing method of financial leasing, effectively use financial leasing to alleviate capital problems, take the initiative to strengthen the connection with financial leasing companies, and invite financial leasing companies with promising cooperation to visit the enterprise on the spot to strive for cooperation.

Dongying Liangxin Petrochemical Technology Development Limited Company
Dongying Junyuan Petrochemical Technology Development Limited Company

The company is holding a video conference,Dongying Liangxin Petrochemical Technology Development Limited Company

The EMD Held a Quarterly Video Conference on Safety Management

The emergency management department held a quarterly Video Conference on centralized management of safety risks of hazardous chemicals

On July 29, the emergency management department held a quarterly video promotion meeting on the centralized management of safety risks of hazardous chemicals nationwide to report progress, analyze problems, exchange practices, strengthen measures, promote the implementation of key tasks, effectively prevent and control major safety risks, and create a stable safety environment for the success of the 20th CPC National Congress. Sunguangyu, member of the Party committee and vice minister of the emergency management department, attended the meeting and delivered a speech. Qichunxiao, the general manager of the group, and Qiao Huijie, the deputy general manager and director of safety and environmental protection, attended the video conference at the venue of the agricultural high-tech division in the Yellow River Delta.

However, from the mid-term evaluation results of centralized governance, there are still problems of uneven progress between regions, lagging progress of some special projects and low quality.

The meeting emphasized that we should have a clear understanding of the severe situation faced by the current safe production of hazardous chemicals and strengthen the sense of mission and urgency of doing a good job in centralized management. We should adhere to the problem orientation, anchor the goal of centralized governance, and make every effort to overcome difficulties. We should quickly wake up, be nervous, and take action. If there is a deviation in the direction of work, we should correct it in time. If the progress of work lags behind, we should pay close attention to make-up lessons, and accelerate the completion.

The meeting required that we should adhere to both the symptoms and root causes, accurately grasp the relationship between major risk prevention and control and centralized governance, promote major risk prevention and control and centralized governance as a whole, and prevent “two skins”. We should organically integrate centralized management and annual key work, integrate the requirements of centralized management tasks and measures into the major inspection of production safety and special safety actions, strengthen supervision and inspection and open and secret visits, do a good job in production safety in summer and flood seasons, strictly implement the main responsibility of enterprises, and resolutely prevent and contain major accidents and accidents with great impact.

At the meeting, Beijing, Liaoning, Zhejiang, Ningxia and other four provinces and CNPC made exchange speeches respectively, and the heads of relevant departments and bureaus, institutions and industry associations of the emergency management department and the main heads of relevant central enterprise safety management departments attended the meeting at the main venue; The heads of the emergency management departments at the provincial, municipal and county levels, as well as the relevant chemical parks and the main heads of enterprises attended the meeting at the branch venue.

Dongying Liangxin Petrochemical Technology Development Limited Company

Normal Pentane, Isopentane and Cyclopentane Blends

Pentane

We offer a large range of flammable and non-flammable blowing agents for Polyurethane (PU), Polystyrene (EPS, XPS) and Polyethelyne (PE) foams, which include liquids and blends.

Blowing Agent of Expendable Polystyrene, Polyurethane

BLENDS

With know how in formulating, handling and packaging blowing agents, we can also offer special blends such as :

n-Pentane/Isopentane
Cyclopentane/Isopentane
Cyclopentane/n-Pentane
Cyclopentane/Isopentane/n-Pentane

Blowing Agents/Pentane Blends

ISOPENTANE 70%, CYCLOPENTANE 30%
ISOPENANE 50%, CYCLOPENANE 50%
ISOPENTANE 30%, CYCLOPENTANE 70%
ISOPENANE 25%, CYCLOPENANE 75%
ISOPENTANE 20%, CYCLOPENTANE 80%
ISOPENANE 15%, CYCLOPENIANE 85%
ISOPENANE 10%, CYCLOPENANE 90%

Blowing Agents/Pentane Blends

ISOPENTANE 15%, NORMAL PENTANE 85%
ISOPENTANE 20%, NORMAL PENTANE 80%
ISOPENTANE 25%, NORMAL PENTANE 75%
ISOPENANE 30%, NORMAL PENANE 70%
ISOPENANE 40%, NORMALPENANE 60%
ISOPENANE 45%, NORMALPENANE 65%
ISOPENANE 50%, NORMALPENIANE 50%
ISOPENTANE 70%, NORMAL PENTANE 30%
ISOPENANE 75%, NORMAL PENANE 25%

PACKAGING

We offer a range of packaging from a bulk of 20 tonnes to a 1 litre sample.

BULK – up to 20 tonnes
CONTAINERS – 20″ GP container, 40″ GP container
DRUMS – 200 litres, 125KG, up to 150 KG
ISO Tanks – 14.5 MT, up to 17 MT
SAMPLE – 1 litre

Cyclopentane as a foaming agent and solvent used for insulation panels

Foaming technology of Cyclopentane polyurethane rigid PU foam

Cyclopentane, as a foaming agent and solvent, has brought many conveniences to our life. Cyclopentane can replace freon and be widely used in refrigerators, insulation materials for freezers and foaming agents for hard PU foam. It can also be used as a solvent for solution polymerization such as polyisoprene rubber and a solvent for cellulose ether. Cyclopentane, as a blowing agent in Polyurethane (PU) foams, is the most important raw material for high-performance insulation in refrigerators. It allows for a high energy efficiency, CO2 reduction and cost savings. At the same time, Cyclopentanes enable a particularly thin insulation for maximum volume utilisation.

Foaming technology is common in every refrigerator, and foaming materials are also very important, which are reflected in heat preservation, noise reduction, more constant box temperature and faster freezing time. There are only four kinds of foaming material technologies used in a refrigerator. The first is monochloroethane, which is the most primitive foaming process. Up to now, it can also be said to be a relatively backward foaming process. The thermal insulation performance of this foaming material is actually good. But there are two obvious shortcomings. One pollutes the atmosphere, the other is easy to crack. Therefore, internationally, the Montreal agreement clearly requires developed countries to completely ban it in 2010. Developing countries are allowed to use it until 2040. Our country has made it clear that the total phase out will be completed ten years ahead of schedule by 2030.

The second kind of Cyclopentane foaming, as a second-generation foaming technology, is used to replace monofluorodichloroethane, which is very good in environmental protection and is not easy to crack.

The third is 245fa mixed foaming agent, which initially aims to solve the problem of the lack of thermal insulation performance of cyclopentane foaming technology, and makes a balance between thermal insulation performance and environmental protection, which belongs to a transitional stage.

The fourth is HFO foaming agent, which is excellent in thermal insulation and environmental protection, and is not easy to crack. It is a luxury to use in refrigerators.

Cyclopentane is commonly used in household appliance foaming materials, and the GWP value of cyclopentane is very small. Halogen free, short life in the atmosphere, easy to decompose safely, and will not destroy the ozone layer. The thermal conductivity of gas phase is small. It can meet the technical requirements of most household appliances for thermal insulation performance.

Cyclopentane is flammable and explosive, with an explosion limit of (1.4-8.0)%. It is listed as a class a class B fire-fighting object in fire fighting. Cyclopentane is also a volatile organic compound, with a volatile amount of 8.5kg/m per hour, with a faint pungent smell. Therefore, there are strict requirements for production equipment, workshops, transportation and storage, as well as higher requirements for the quality and safety of enterprise employees.

Cyclopentane itself has low toxicity and deasterification function. Once it contacts the skin or splashes into the eyes, it should be immediately cleaned with clean water. Once cyclopentane leaks, it should be diluted and dispersed with inert gas nitrogen immediately. The above is the knowledge sharing on cyclopentane foaming process sorted out by Junyuan Petroleum Group and I hope it will be helpful to you!

Pentane Formula, Properties, Uses and Isomers

Pentane – Thermophysical Properties

Chemical, physical and thermal properties of pentane, also called n-pentane. Phase diagram included.

Physical Properties The boiling points of the pentane isomers range from about 9 to 36 °C. As is the case for other alkanes, the more branched isomers tend to have lower boiling points.

Usually, n-Pentane is used as a refrigeration or air conditioning substance, effectively replacing substances such as fluorinated hydrocarbons and ammonia. Here are some of its potential uses: refrigerant R601, non-polar solvent polyethylene process medium, how to use Isopentane? Isopentane is widely used. Firstly, it is an important refrigerant, which is used as the mixed refrigerant component of condensation inducer and LNG in LLDPE unit of olefin plant; Used for blending octane number of oil products;

Usage: isopentane is widely used. First, it is an important refrigerant of olefin unit, condensation inducer of LLDPE unit and LNG mixed refrigerant components; Used for blending oil octane number; It is widely used in organic synthesis reactions and the separation and purification of organic compounds; Secondly, isopentane dehydrogenation can be made of isoprene and isoprene, and isopentanol is obtained by chlorination and hydrolysis. It is also an important raw material for organic synthesis. Isopentane can also be used with n-pentane in EPS (expandable polystyrene) blowing agent, or with cyclopentane as rigid polyurethane blowing agent. It is mainly used in organic synthesis and also as a solvent.

Cyclopentane, as a blowing agent in Polyurethane (PU) foams, is the most important raw material for high-performance insulation in refrigerators. 

Pentane, C5H12, is a clear colorless liquid with a petroleum-like odor. It belongs to the organic class alkanes, and is naturally present in crude oils and condensates. It is a component of some fuels and is employed as a specialty solvent in the laboratory.

The boling point 36°C/97°F, and the vapors are heavier than air. Both the liquid an the vapor are flammable.

The phase diagram of pentane is shown below the table.

Chemical, physical and thermal properties of pentane:
Values are given for liquid at 25oC /77oF / 298 K and 1 bara, if not other phase, temperature or pressure given.

Property Value Unit Value Unit Value Unit Value Unit
Autoignition temperature 533 K 260 °C 500 °F
Boiling Point 309.2 K 36.06 °C 96.9 °F
Critical density 3.22 mol/dm3 232 kg/m3 0.450 slug/ft3 14.5 lb/ft3
Critical pressure 3.36 MPa=MN/m2 33.6 bar 33.2 atm 487 psi=lbf/in2
Critical temperature 469.8 K 196.7 °C 386.0 °F
Critical volume 311 cm3/mol 0.00431 m3/kg 2.22 ft3/slug 0.0690 ft3/lb
Density 8606 mol/m3 620.9 kg/m3 1.205 slug/ft3 38.76 lb/ft3
Flammable, gas and liquid yes
Flash point 224 K -49 °C -56 °F
Gas constant, individual, R 115.2 J/kg K 0.03201 Wh/(kg K) 689.1 [ft lbf/slug °R] 21.42 [ft lbf/lb °R]
Gibbs free energy of formation (gas) -8 kJ/mol -111 kJ/kg -48 Btu/lb
Heat (enthalpy) of combustion (gas) -3535 kJ/mol -48996 kJ/kg -21.1 Btu/lb
Heat (enthalpy) of combustion (liquid) -3509 kJ/mol -48636 kJ/kg -20.9 Btu/lb
Heat (enthalpy) of formation (gas) -147.0 kJ/mol -2037 kJ/kg -876 Btu/lb
Heat (enthalpy) of formation (liquid) -173 kJ/mol -2398 kJ/kg -1031 Btu/lb
Heat (enthalpy) of fusion at -202 °F/-130°C 8.4 kJ/mol 116 kJ/kg 50.05 Btu/lb
Heat (enthalpy) of sublimation, at -202°F/-130°C 42 kJ/mol 582 kJ/kg 250 Btu/lb
Heat (enthalpy) of evaporation 26.4 kJ/mol 366 kJ/kg 157 Btu/lb
Heat capacity, Cp (gas) 120.0 J/mol K 1.66 kJ/kg K 0.397 Btu/lb°F or cal/g K
Specific heat, Cp (liquid) 168.0 J/mol K 2.33 kJ/kg K 0.556 Btu/lb°F or cal/g K
Specific heat, Cv (liquid) 125.0 J/mol K 1.73 kJ/kg K 0.414 Btu/lb°F or cal/g K
Ionization potential 10.34 eV
log KOW (Octanol/Water Partition Coefficient) 3.39
Melting point 143.48 K -129.7 °C -201.4 °F
Molecular Weight 72.149 g/mol 0.15906 lb/mol
Solubility in water, at 25°C 0.038 mg/ml
Sound velocity 1012 m/s 3319 ft/s 2267 mi/h
Specific Gravity (gas) (relativ to air) 2.48
Specific Gravity (liquid) (relativ to water) 0.63
Specific Heat Ratio (gas) – CP/CV 1.09
Specific Heat Ratio (liquid) – CP/CV 1.34
Specific Volume 0.0001162 m3/mol 0.0016106 m3/kg 0.8300514 ft3/slug 0.0257988 ft3/lb
Standard molar entropy, S° (gas) 348 J/mol K 4.82 kJ/kg K 1.15 Btu/lb °F
Standard molar entropy, S° (liquid) 263 J/mol K 3.65 kJ/kg K 0.87 Btu/lb °F
Surface tension 16.0 dynes/cm 0.016 N/m
Thermal Conductivity 0.111 W/m°C 0.064135 Btu/hr ft °F
Triple point pressure 7.63*10-8 MPa=MN/m2 7.63*10-7 bar 7.53*10-7 atm 1.11*10-5 psi=lbf/in2
Triple point temperature 143.5 K -129.7 °C -201.46 °F
Vapor (saturation) pressure 0.0685 MPa=MN/m2 514.0 mm Hg 0.6762 atm 9.94 psi=lbf/in2
Viscosity, dynamic (absolute) 0.2224 cP 149.4 [lbm /ft s*10-6] 4.64 [lbf s/ft2 *10-6]
Viscosity, kinematic 0.358 cSt 3.9 [ft2/s*10-6]

Density and specific weight of liquid pentane at varying temperature and atmospheric pressure, SI and Imperial units:

Density units conversion of Pentane:

kilogram/cubic meter [kg/m3] = gram/liter [g/l], kilogram/liter [kg/l] = gram/cubic centimeter [g/cm3]= ton(metric)/cubic meter [t/m3], once/gallon(US liquid) [oz/gal(US liq)] pound/cubic inch [lb/in3], pound/cubic foot [lb/ft3], pound/gallon(UK) [lb/gal(UK)], pound/gallon(US liquid) [lb/gal(US liq)], slug/cubic foot [sl/ft3], ton(short)/cubic yard [ton(short)/yd3], ton(long)/cubic yard [yd3]

  • 1 g/cm3 = 1 kg/l = 1000 kg/m3 = 62.428 lb/ft3 = 0.03613 lb/in3 = 1.9403 sl/ft3 = 10.0224 lb/gal(UK) = 8.3454 lb/gal(US liq) = 0.5780 oz/in= 0.7525 ton(long)/yr3
  • 1 g/l = 1 kg/m3 = 0.001 kg/l = 0.000001 kg/cm3 = 0.001 g/cm3 = 0.99885 oz/ft3  = 0.0005780 oz/in3 = 0.16036 oz/gal(UK) = 0.1335 oz/gal(US liq) = 0.06243 lb/ft3 = 3.6127×10-5 lb/in3 = 1.6856 lb/yd3 = 0.010022 lb/gal(UK) = 0.0083454 lb/gal(US liq) = 0.0007525 ton(long)/yd= 0.0008428 ton(short)/yd3
  • 1 kg/l = 1 g/cm3 = 1000 kg/m3 = 62.428 lb/ft3 = 0.03613 lb/in3 = 1.9403 sl/ft3 = 8.3454 lb/gal(US liq) = 0.5780 oz/in= 0.7525 ton(long)/yr3
  • 1 kg/m3 = 1 g/l = 0.001 kg/l = 0.000001 kg/cm3 = 0.001 g/cm3 = 0.99885 oz/ft3  = 0.0005780 oz/in3 = 0.16036 oz/gal(UK) = 0.1335 oz/gal(US liq) = 0.06243 lb/ft3 = 3.6127×10-5 lb/in3 = 1.6856 lb/yd3 = 0.010022 lb/gal(UK) = 0.008345 lb/gal(US liq) = 0.0007525 ton(long)/yd = 0.0008428 ton(short)/yd
  • 1 lb/ft3 = 27 lb/yd3 = 0.009259 oz/in= 0.0005787 lb/in= 16.01845 kg/m3 = 0.01602 g/cm3  = 0.1605 lb/gal(UK) = 0.1349 lb/gal(US liq) = 2.5687 oz/gal(UK) = 2.1389 oz/gal(US liq) = 0.01205 ton(long)/yd3 = 0.0135 ton(short)/yd3
  • 1 lb/gal(UK) = 0.8327 lb/gal(US liq) = 16 oz/gal(UK) = 13.323 oz/gal(US liq) = 168.179 lb/yd3 = 6.2288 lb/ft3 = 0.003605 lb/in3 = 0.05767 oz/in = 99.7764 kg/m3 = 0.09977 g/cm3  = 0.07508 ton(long)/yd3 = 0.08409 ton(short)/yd3
  • 1 lb/gal(US liq) = 1.2009 lb/gal(UK) = 19.215 oz/gal(UK) = 16 oz/gal(US liq) = 201.97 lb/yd3 = 7.4805 lb/ft3 = 0.004329 lb/in3 = 0.06926 oz/in = 119.826 kg/m3 = 0.1198 g/cm3  = 0.09017 ton(long)/yd3 = 0.1010 ton(short)/yd3
  • 1 lb/in3 = 1728 lb/ft3 = 46656 lb/yd3 = 16 oz/in= 27680 kg/m3 = 27.680 g/cm3  = 277.419 lb/gal(UK) = 231 lb/gal(US liq) =4438.7 oz/gal(UK) = 3696 oz/gal(US liq) = 20.8286 ton(long)/yd3 = 23.3280 ton(short)/yd3
  • 1 oz/gal(UK) =  0.8327 oz/gal(US liq) = 6.2360 kg/m3 = 6.2288 oz/ft3 = 0.3893 lb/ft3 = 10.5112 lb/yd3
  • 1 oz/gal(US liq) = 1.2009 oz/gal(UK) = 7.4892 kg/m3 = 7.4805 oz/ft3 = 0.4675 lb/ft3 = 12.6234 lb/yd3
  • 1 sl/ft3 = 515.3788 kg/m3 = 514.7848 oz/ft3 = 0.2979 oz/in3 = 32.1741 lb/ft3 = 82.645 oz/gal(UK) = 68.817 oz/gal(US liq) 
  • 1 ton(long)/yd3 = 1.12 ton(short)/yd3 = 1328.94 kg/m3 = 0.7682 oz/in3 = 82.963 lb/ft3 = 2240 lb/yd3 = 2.5786 sl/ft3 = 13.319 lb/gal(UK) = 11.0905 lb/gal(US liq)
  • 1 ton(short)/yd3 = 0.8929 ton(long)/yd3 = 1186.55 kg/m3 = 0.6859 oz/in3 = 74.074 lb/ft3 = 2000 lb/yd3 = 2.3023 sl/ft3 = 11.8921 lb/gal(UK) = 9.9023 lb/gal(US liq)


Pentane Phase Digaram

HR director is interviewing, Dongying Liangxin Petrochemical Technology Development Limited Company

Graduate Students from OUC Come to Our Company for Exchange

Graduate students from Ocean University of China come to our company for exchange and visit

On the morning of July 22, a group of 5 graduate students majoring in Applied Chemistry from Ocean University of China came to our company for exchange and visit. Sun peisheng, the assistant general manager of the company, Wei fuchang, the director of the production and operation center, and chen huimin, the manager of the general office, attended the exchange.

Chen Huimin extended a warm welcome to the exchange students of Ocean University of China and introduced the company in detail. The graduate students listened carefully to the introduction and watched the company’s promotional videos. Wei fuchang led the exchange students to visit the factory and gave relevant explanations. Sun Peisheng had in-depth exchanges with students in the company’s products, research directions, cooperation fields and other aspects. This activity created opportunities for communication and learning between the company and the school, and laid a good foundation for the next step of school and enterprise cooperation.

Dongying Liangxin Petrochemical Technology Development Limited Company

The director of human resources department is talking with the presidents of major universities, Dongying Liangxin Petrochemical Technology Development Limited Company

DVCST Visited Our Company for Exchange and Investigation

Dongying Vocational College of Science and Technology visited our Company for Exchange and Investigation

On the morning of July 13, Miao Jin, Dean of the school of Economics and Management of Dongying Vocational College of Science and Technology, and his delegation came to our company for exchange and investigation. Chen Huimin, Manager of the General Office of the company, participated in this exchange activity. Chen Huimin extended a warm welcome to the leaders of the college, and the two sides had an in-depth exchange and Discussion on how to deepen school and enterprise cooperation. Miao Jin expressed the hope to reach long-term practical training friendly cooperation with the company.

Through this exchange activity, the communication and understanding between the company and the school have been strengthened, the friendly relationship between the two sides has been enhanced, and the foundation has been laid for further cooperation.

Dongying Liangxin Petrochemical Technology Development Limited Company, a subsidiary of Junyuan Petroleum Group, has been engaged in the export of butane, pentane, hexane and heptane since 2006. More than 15 years of experience enables you to rest without worrying about goods transportation.

Major customers include PetroChina, Sinopec, Shell, BASF, Saudi Basic Industries Corporation, China Coal, geothermal power plants and other foaming plants.
SGS, CIQ, BV, Rosh, ISO certificates are available.
Production Capacity: 1000,000 tons / year
After Sales Service: Dongying Liangxin Petrochemical Technology Development Limited Company enjoys a good reputation in the alkane industry. You can trust us completely.
Quality Assurance
As a quality-oriented company, we spare no effort to provide customers with the best range of products. In addition, we have hired a team of quality analysts to ensure that our industrial chemicals series meet international standards. Our quality analyst team maintains strict monitoring of the handling of chemicals and ensures that the range of various parameters is checked before sending chemicals to the client. The various parameters of our csindustrial chemical series tests are as follows:
Pure
PH value
Precise composition
For more information: info@junyuanpetroleumgroup.com

Request a Quote

Request a Quote

for Pentanes, Hexanes, Heptanes, Butanes and more

I will be back soon

Request a Quote
If you would like to receive a quote to purchase a product or you would like more information, please message us on WhatsApp.