

Specifications Guide Asia Pacific and Middle East Refined Oil Products

Latest update: August 2022

Definitions of the trading locations for which Platts publishes daily indexes or assessments	2
Straits terminals	2
LPG	7
Gasoline	10
Naphtha	14
Jet fuel	18
Gasoil	20
FOB Singapore gasoil / diesel specifications	24
Additives in Singapore and the Middle East 10ppm	25
Fuel oil	27
FSU FOB Singapore	29
Bitumen	31
Revision history	34

DEFINITIONS OF THE TRADING LOCATIONS FOR WHICH PLATTS PUBLISHES DAILY INDEXES OR ASSESSMENTS

The following specifications guide contains the primary specifications and methodologies for S&P Global Commodity Insights' Platts refined oil products assessments throughout Asia Pacific and the Middle East. All the assessments listed here employ Platts Assessments Methodology, as published at https://www.spglobal.com/platts/plattscontent/_assets/_files/en/our-methodology/methodology-specifications/platts-assessments-methodology-guide.pdf.

These guides are designed to give Platts subscribers as much information as possible about a wide range of methodology and specification questions.

This guide is current at the time of publication. Platts may issue further updates and enhancements to this guide and will announce these to subscribers through its usual publications of record. Such updates will be included in the next version of this guide. Platts editorial staff and managers are available to provide guidance when assessment issues require clarification.

STRAITS TERMINALS

Terminal	Location	No. of Berths	Maximum draft (m)	Maximum LOA (m)/vessel type	No. of tanks	Storage capacity (cu m)	Ownership	Platts Gasoline	Platts Jet	Platts Gasoil	Platts HSF0	Platts Marine Fuel 0.5%
Helios	Jurong Island	6+1 (VLCC)	18.5/24.5 (VLC	C)280/353 (VLCC)	18	503,408	55% Oiltanking GmbH; 45% Macquarie	No	No	No	Yes	Yes
Jurong Port Universal Terminal	Jurong Island	6	23	333/VLCC	78	2,360,000	41% Jurong Port; 25% PetroChina; 34% Macquarie Asia Infrastructure Fund	a _{Yes}	Yes	Yes	Yes	Yes
Horizon	Jurong Island	7	16.5	333/VLCC	59	1,243,990	JV between Horizon Terminals Ltd (52%) and four partners SK Corp, Independent Petroleum Group, Boreh International, Martank	Yes	Yes	Yes	Yes	Yes
Tankstore	Pulau Busing, Bukom Island	11	17.1	360	107	2,000,000	100% PB TANKER (Kuo International (Pte) Ltd)	Yes	Yes	Yes	Yes	Yes
SRC	Jurong Island	7	15	290/up to 105,000 dwt		1,904,762	50% Chevron; 50% PetroChina (through SPC)	Yes	Yes	Yes	Yes	Yes
Oiltanking	Jurong Island	11	15.7	335	80	1,305,444	55% Oiltanking GmbH; 45% Oystercatcher	Yes	Yes	Yes	Yes	Yes
Shell Bukom	Pulau Bukom	9				3,900,000	100% Shell	Yes	Yes	Yes	Yes	Yes
XOM Jurong	Jurong	5				2,310,000	100% ExxonMobil	Yes	Yes	Yes	Yes	Yes
XOM PAC	Jurong Island	6				1,700,000	100% ExxonMobil	Yes	Yes	Yes	Yes	Yes
Tuas	Jurong	1	10.2 (without tide)	280	1	60,000	100% Huaneng Power International	No	No	No	Yes	Yes
Vopak Sebarok	Pulau Sebarok	9	17.6	280/Half Laden VLCC	79	1,263,079	100% Vopak Terminals Singapore (69.5% Vopak; 30.5% PSA Corp)	Yes	Yes	Yes	Yes	Yes
Vopak Banyan	Jurong Island	7	15.5	260/Aframax	60	1,025,339	100% Vopak Terminals Singapore (69.5% Vopak; 30.5% PSA Corp)	Yes	Yes	Yes	Yes	Yes
Chevron Penjuru	Jurong	7	14.8	300	40	485,600	100% Chevron	Yes	Yes	Yes	Yes	Yes
Power Seraya	Jurong Island	4	12.6	275/Suezmax	20	835,000	100% YTL PowerSeraya	No	No	Yes	Yes	Yes
Senoko Power	Woodlands	1	12	277	7	260,000	Senoko	No	No	Yes	No	No
SPC	Pulau Sebarok	3	17	297/120,000 dwt	13	220,000	100% PetroChina	No	Yes	Yes	Yes	Yes
Exxon SCP Banyan facility	Jurong Island	3	17	290		60,000 each for gasoil, jet/kero	100% ExxonMobil	No	Yes	Yes	No	No
Jurong Port Tank Terminals	Jurong	4	17.6	274/180,000 dwt	19	252,000	60% Jurong Port Pte Ltd; 40% Oiltanking GmbH	Yes	No	No	No	No
Dialog Terminals Langsat	Tanjung Langsat, Johor	7	13.5	430/partially laden VLCC		;647,000 (DTL1:476,000 DTL2:171,000)	; 100% Dialog Terminals	Yes	Yes	Yes	Yes	Yes
		7	13.5	430/partially laden VLCC		206,730	100% Dialog Terminals Langsat	Yes	No	No	No	No

Terminal	Location	No. of Berths	Maximum draft (m)	Maximum LOA (m)/vessel type	No. of tanks	Storage capacity (cu m)	Ownership	Platts Gasoline	Platts Jet	Platts Gasoil	Platts HSF0	Platts Marine Fuel 0.5%
Tanjung Bin	Tanjung Bin, Johor	6	17.5	fully-laden Suezma or partially laden VLCC	ax 59	1,408,000	100% VTTI	Yes	Yes	Yes	Yes	Yes
Tanjung Pengerang	Pengerang, Johor	6	24	350 (VLCC)	81	1,700,000	Pengerang Independent Terminals Sdn Bhd (46% Dialo Group Bhd; 44% Royal Vopak; 10% State Secretary Inc (Johor))	9	Yes	Yes	No	No
Tanjung Pengerang	Pengerang, Johor	3	18.8/20.3 (actual maximum dredge level)	350/partially laden VLCC	17	430,000	Dialog Terminals Pengerang (5) Sdn Bhd (90% Dialog Terminals Sdn Bhd; 10% Permodalan Darul Ta'zim Sdn Bhd)		Yes	Yes	No	No
Pasir Gudang (Far East Oi Terminal One)	l Pasir Gudang, Johor	4	13.5	290 (Aframax)	16	231,000	Cosco-Feoso (S) Pte Ltd (JV between Cosco Holdings (S Pte Ltd and Feoso Investment (S) Pte Ltd)) No	No	No	Yes	Yes
*Oiltanking Karimun Terminal	Karimun Island, Indonesia	4	23	346/partially laden VLCC	30	730,000	65% Oiltanking GmbH; 35% Gunvor Group	Yes	Yes	Yes	Yes	Yes

STRAITS TERMINALS

Terminal information provided for reference only and reflects most recent available data.

*See Karimun terminal section

FOB Straits Nomination Standards

Platts editorial standards for the Market On Close assessment process for FOB Singapore fuel oil, gasoil, gasoline and jet fuel calls for best practices in all aspects of operational performance, including terminal and vessel nominations.

Location basis for bids, offers and trades: Platts FOB Singapore assessments reflect "FOB Straits" bids. offers and transactions wherein sellers should proceed to nominate loading from one of the locations in Singapore and Malaysia that are approved for the Platts MOC price assessment process and are listed in the table.

Platts only publishes bids, offers and expressions of interest to trade for FOB Straits fuel oil, gasoline, gasoil and jet cargoes for which the following standards would apply: Sellers must declare a terminal 10 days prior to the first day of the loading window, and buyers should nominate a single performing vessel seven days prior, with the buyer narrowing the loading window to three days, subject to loading terminal acceptance. All nominations should typically be communicated to counterparties by 5 pm Singapore time.

If the nomination day falls on a weekend or a public holiday, nominations should be done on the business day prior to the weekend or public holiday. Buyers may submit multiple vessels for terminal vetting prior to nominating a performing vessel, and buyers may substitute the vessel prior to loading, subject to terminal acceptance.

Platts expects parties to be reasonable when exceptional circumstances require buyers to substitute vessels or sellers to substitute terminals after the respective nomination deadlines. Sellers should not unreasonably withhold vessel substitutions or hamper the established loading process. If the substituted vessel tendered the notice of readiness in time for loading, sellers should not put buyers on best endeavor basis.

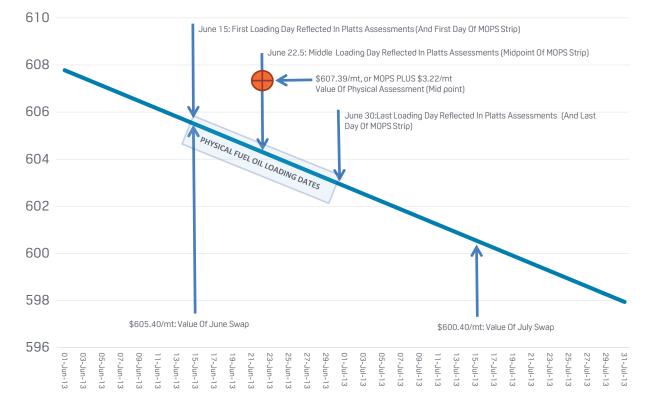
Nomination of "non-commensurate" vessels should not expose the seller to incur additional costs associated with the largesized vessels. The buyer has the right to nominate a noncommensurate vessel to load a cargo traded via the Singapore MOC assessment process, while the seller has the obligation to accept a commensurate vessel and try to accommodate a non-commensurate vessel if the terminal scheduling permits.

The seller's exposure to demurrage and laytime should not exceed the normal associated demurrage and laytime, of a commensurate vessel.

For fuel oil loadings, Platts understands that up to Aframaxsize tankers are considered commensurate; for middle distillates loadings, up to medium range tankers are considered commensurate; for gasoline loadings, small range tankers are considered commensurate for individual clips and up to MR tankers for co-loading of cargoes.

Any terminal nominated for performance on FOB Straits transaction concluded during the Platts assessment process should typically be able to manage at least one co-load of standard-sized cargoes of 20,000 mt to 40,000 mt, for fuel oil, and 100,000 barrels to 250,000 barrels for jet fuel and gasoil.

For instance, a vessel which is already carrying 20,000 mt of fuel oil should be able to load at least another 20,000 mt from a second terminal, without draft restrictions hindering a vessel's ability to leave the port.


Seller should promptly communicate to buyers when substituting a terminal. The substitute terminal should conform to the nominated vessel and should not harm the buyer or affect any prior agreement between the counterparties regarding physical performance of the trade, unless with mutual consent.

All parties to a transaction are expected to demonstrate reasonability around alternative delivery arrangements. These arrangements include, but are not limited to, co-loading of cargoes or inter-tank transfers. Parties to a transaction may not unilaterally assume that the counterparty is bound to accept the alternative delivery arrangement -- any such request should be clearly communicated and mutually agreed to prior to nomination of the performing vessel seven days prior to loading.

Buyers and sellers should not unreasonably withhold counterparty's request for alternative loading arrangements. Any direct additional costs incurred by the seller in fulfilling the alternative delivery may be borne in line with standard industry practice by the party requesting the arrangement.

If requested, sellers should demonstrate the additional costs incurred, for example any fees related to inter-tank transfers, to their counterparty. Where the laycans for co-loaded cargoes are spread apart, the party requesting alternative loading arrangement may be expected to compensate the counterparty for any difference in cargo value.

Karimun terminal: From July 3, 2017, Platts began publishing standalone offers of gasoil, jet fuel and gasoline cargoes loading from PT Oiltanking Karimun Terminal, Indonesia in the Singapore MOC assessment process, and from June 1, 2020, Platts began publishing standalone offers of fuel oil and Marine Fuel 0.5% in the Singapore MOC assessment process. Platts publishes such offers on an FOB Indonesia (FOB ID) basis, where the seller must clearly state the loading point as FOB Karimun at the time of communicating their interest to Platts for publication. Platts does not publish FOB Indonesia bids. For trades reported on FOB Straits basis, sellers may not unilaterally nominate Karimun as

a delivery point, though it may be agreed by mutual consent, and should deliver from approved terminals in Singapore and Malaysia.

Cost differences between Singapore and Malaysia:

Nominations for loading out of a terminal in Malaysia should not cause undue financial harm to a buyer, relative to receiving a nomination out of a Singapore terminal. Any demonstrable incremental costs incurred by the buyer from a Malaysian terminal nomination, including cabotage for onward deliveries into Malaysia itself, should be costs borne by the seller in the MOC process.

Reviews of MOC terminals and trade data: It is critical for Platts to monitor the quality of the information submitted by companies wishing to participate in the Platts MOC processes, including any infrastructure that will form part of the execution of that information.

Platts routinely, and as part of standard editorial practice,

ILLUSTRATION OF THE MOPS STRIP

reviews the infrastructure reflected in its price assessment processes. These reviews ensure the suitability of data and information that are used to formulate Platts' end-of-day price assessments.

These reviews are conducted on a regular basis, and may take into consideration an array of issues including, but not limited to, operational and logistical issues, as well as counterparty acceptance.

The reviews are not designed to impede a company's ability to bilaterally engage in market transactions; the objective at all times is to ensure the integrity of published price assessments. Platts does not disclose the nature or scope of such routine reviews.

Explanation of the MOPS Strip

This explanation for the MOPS Strip describes how it is determined, and its application in Platts assessment process.

The Platts assessment process determines the value of physical commodities 15-30 days forward for many oil products loading in Singapore. Many of these commodities trade on an outright price basis – where the full price is known at the time of trade -- or on a Platts-related, floating price basis – where much of the value is determined in reference to reference prices that will be published in the future.

When the value of the commodity is clearly defined through outright price bid, offer or trade, such activity can help establish value with a high degree of certainty. When there is a lack of outright price activity in a market, or when the most clearly defined market activity is being demonstrated on a floating price basis, it becomes critical to track the value the market assigns to future, yet-to-be published Platts assessments.

"MOPS" is an acronym that stands for the "Mean of Platts Singapore", and typically refers to any contract mechanism that derives its value by referencing the average of a set of Singapore-based oil price assessments to be published by Platts in the future – over a week, a month, or any agreed period of time. In derivatives markets, a "strip" is any contiguous date series in the future. A "Summer Strip" might be April, May, June, July, August and September. An "Annual Strip" would typically be 12 consecutive months.

A "MOPS Strip" is the sequence of 16 days that represent the future loading dates reflected in Platts Singapore oil product assessments.

The MOPS Strip published by Platts for certain oil markets represents the value the market assigns to future Platts assessments, through trading in MOPS-related, monthly derivatives. This value is determined by analyzing the derivatives market.

A derivative is a financially settled contract. Sometimes referred to as "paper", a derivative is a fixed price transaction, where the buyer is paid (or pays) the difference between the agreed strike price in the contract, and the actual average value of an underlying reference benchmark price. As an example, MOPSrelated December "Singapore 180CST fuel oil derivative" settle their value from the average of assessments for the value of 180 CST fuel oil FOB Singapore, as published by Platts over the month of December.

As financially settled contracts, derivatives derive their value from published benchmark assessments. They do not entail physical delivery of oil. For example, if a 1,000 mt June derivative was bought at \$605/mt, the seller would pay the buyer \$10/ mt (or \$10,000 in this example) if the underlying benchmark averaged \$615/mt over the month of June; the buyer would pay the seller \$10/mt (or \$10,000 in this example) if the reference price averaged \$595/mt. Derivatives, commonly used to hedge exposure to benchmark prices in the future, are generally traded for full months, and also the balance of the prevailing month.

The final financial settlement of a derivative can only be

completed when all the value that comprise the average are known (ie, after the last publishing day in June, for a swap that references the average of published prices in June).

Just like derivatives, Platts-related physical cargoes that trade on a floating price basis ultimately derive a final value over a pre-determined period of time in the future – usually around loading dates, with a premium or discount applied to reflect market structure, and possible differences in specification, location and trading terms.

The MOPS Strip is used as a component in measuring the value of the physical market, when floating price trading is common. The strip represents an underlying, market-assigned future value for the Platts assessments, and it is an important component in fully analyzing the price determination of physical cargoes when they are regularly traded on a floating price basis. While the value that Platts will publish in its assessments can never be known at the time of trading a cargo that will be delivered and priced in the future, a hedgeable, proxy value for the relevant Platts assessments of the future can be extrapolated from derivatives markets, so long as the derivatives analyzed, and the floating price physical contract being valued, use the same Platts reference price for final settlement.

Platts therefore publishes a MOPS Strip in markets where physical cargoes trade at both fixed price levels, and as premiums or discounts to the Platts assessment itself. It is published when there is a vibrant swaps market to serve as the basis for analysis. In Singapore, Platts publishes a MOPS Strip value for gasoline, jet fuel/kerosene, naphtha, gasoil and fuel oil. There is no MOPS Strip calculated for products where derivatives are not assessed by Platts.

By standing as a hedgeable proxy value for the MOPS element of a floating price cargo, the MOPS Strip is essential to defining the flat price equivalent value of a cargo that is traded as a premium or discount to the Platts assessment. The MOPS Strip defines the value of "MOPS" in the assessment formula: "physical value = MOPS plus premium (or discount)."

To fully understand the application of the MOPS Strip, it is important to note that Platts physical price assessments for most Singapore cargoes are based on cargoes loading 15-30 days forward from the date of the price assessment itself. Hence, if today is May 31, the assessments will reflect the value of cargoes loading during June 15-30.

MOPS Strip is the value of the Singapore derivatives market, effective for the mid-point date of the physical assessment. In this particular example, the mid-point of the assessed period is notionally June 22.5. This is a specific sample calculation for how the MOPS strip would be calculated:

180 CST high sulfur fuel oil on May 31, 2013 (\$/mt)

June (paper): \$605.40

July (paper):\$600.40

June/July spread: +\$5.00 (backwardation)

Physical FOB Singapore 180 CST (loading on June 15-30): \$607.39

Since there are 30.5 days between mid-June (30 days) and mid-

July (31 days) – we calculate the daily backwardation value to be +0.1639 (from 5.00/30.5). Since there are seven and a half days between mid-June (June 15) and the mid-point date for physical assessment (June 22.5), the calculated MOPS strip value is:

= \$605.40 + (0.1639 x -7.5)

= \$604.17

In terms of the application of MOPS Strip in the Platts assessment process: the MOPS Strip provides the third leg when triangulating the physical value of the market using the formula "physical value = MOPS plus premium (or discount)." The MOPS Strip defines the value of "MOPS" in this equation. Again, this MOPS value is what the market has determined the future, yet to be published Platts assessments are able to be hedged at in the derivatives marketplace.

In an example, the difference between the physical value arrived at by the close of the assessment process and the MOPS Strip yields either a positive value or a negative value. This is the 'premium' or the 'discount' at which the physical market is trading versus future Platts assessments. In this case:

Physical premium (or discount) = Physical assessment - MOPS strip

Physical premium (or discount) = \$607.39 - \$604.17

Physical premium (or discount) = \$3.22

In a second example, the reverse process also generates a value. If Platts assessed the physical market premium as being MOPS plus \$3.22, the following equation could be applied:

Physical assessment = MOPS plus premium (or discount)

Physical assessment = 604.17 + 3.22

Physical assessment = \$607.39

MOPAG Strip: Platts publishes assessments for Mean of Platts Arab Gulf or MOPAG Strip for 95 RON gasoline, gasoil, jet fuel/ kerosene and 380 CST fuel oil. The MOPAG Strip value is derived from MOPAG swaps using the same broad methodology as shown above for the MOPS strip calculations – although the two strips reflect derivatives values over different periods. The MOPAG swaps settle on Platts MOPAG netback assessments that reflect cargoes loading 20-40 days from the day of publication. Hence the MOPAG Strip represents the derivative value 20-40 days forward. Platts uses Balance Month and Month 1 swaps to calculate the MOPAG Strip value until the 10th calendar day of the month, following which Month 1 and Month 2 swaps are used to calculate the strip.

LPG

Assessment	CODE	Mavg	Pavg Wavg CONTRACT BA	SIS LOCATION	DELIVERY PERIOD	MIN SIZE	MAXSIZ	E CURRENCY	UOM	CONV
Propane Refrigerated CFR North Asia 30-45 days	AAVAK00	AAVAK03	CFR	Japan/Korea	30-45 days	11,000	44,000	US\$	Metric Tons	
Propane Refrigerated CFR North Asia 45-60 days	AAVAL00	AAVAL03	CFR	Japan/Korea	45-60 days	11,000	44,000	US\$	Metric Tons	
Propane Refrigerated CFR North Asia 60-75 days	AAVAM00	AAVAM03	CFR	Japan/Korea	60-75 days	11,000	44,000	US\$	Metric Tons	
Propane Refrigerated CFR North Asia 30-60 days cargo	PMAAV00	AAAVR00	CFR	Japan/Korea	30-60 days	11,000	44,000	US\$	Metric Tons	
Propane CFR North Asia 30-60 days vs Saudi Propane CP M1	PMAAX00	PMUEI03	CFR	Japan/Korea	30-60 days	11,000	44,000	US\$	Metric Tons	
Propane Refrigerated CFR South China 20-35 days cargo	AABAK00	AABAM00	CFR	China	20-35 days	11,000	44,000	US\$	Metric Tons	
Propane CFR South China 20-35 days vs Saudi Propane CP M1	AABAI00	AABAI03	CFR	China	20-35 days	11,000	44,000	US\$	Metric Tons	
Propane Refrigerated CFR Taiwan 20-35 days cargo	AABAN00	AABAQ00	CFR	Taiwan	20-35 days	11,000	44,000	US\$	Metric Tons	
Propane CFR Taiwan 20-35 days vs Saudi Propane CP M1	AABA000	AABA003	CFR	Taiwan	20-35 days	11,000	44,000	US\$	Metric Tons	
Propane FOB AG 20-40 days cargo	PMUDM00	PMUDN03	FOB	Arab Gulf	20-40 days	11,000	44,000	US\$	Metric Tons	
Propane FOB AG 20-40 days cargo Month to Date	PMUD000		FOB	Arab Gulf	20-40 days	11,000	44,000	US\$	Metric Tons	
Propane FOB AG 20-40 days cargo vs Saudi Propane CP M1	PMABF00	PMUEJ03	FOB	Arab Gulf	20-40 days	11,000	44,000	US\$	Metric Tons	
Propane FOB Saudi Arabia CP	PTAAM10		FOB	Saudi Arabia				US\$	Metric Tons	
Butane Refrigerated CFR North Asia 30-45 days	AAVAN00	AAVAN03	CFR	Japan/Korea	30-45 days	11,000	44,000	US\$	Metric Tons	
Butane Refrigerated CFR North Asia 45-60 days	AAVA000	AAVA003	CFR	Japan/Korea	45-60 days	11,000	44,000	US\$	Metric Tons	
Butane Refrigerated CFR North Asia 60-75 days	AAVAP00	AAVAP03	CFR	Japan/Korea	60-75 days	11,000	44,000	US\$	Metric Tons	
Butane Refrigerated CFR North Asia 30-60 days cargo	PMAAF00	AAAVQ00	CFR	Japan/Korea	30-60 days	11,000	44,000	US\$	Metric Tons	
Butane CFR North Asia 30-60 days vs Saudi Butane CP M1	PMAAH00	PMUEL03	CFR	Japan/Korea	30-60 days	11,000	44,000	US\$	Metric Tons	
Butane Refrigerated CFR South China 20-35 days cargo	AABAU00	AABAS00	CFR	China	20-35 days	11,000	44,000	US\$	Metric Tons	
Butane CFR South China 20-35 days vs Saudi Butane CP M1	AABAT00	AABAT03	CFR	China	20-35 days	11,000	44,000	US\$	Metric Tons	
Butane Refrigerated CFR Taiwan 20-35 days cargo	AABBH00	AABBK00	CFR	Taiwan	20-35 days	11,000	44,000	US\$	Metric Tons	
Butane CFR Taiwan 20-35 days vs Saudi Butane CP M1	AABBI00	AABBJ00	CFR	Taiwan	20-35 days	11,000	44,000	US\$	Metric Tons	
Butane FOB AG 20-40 days cargo	PMUDR00	PMUDS03	FOB	Arab Gulf	20-40 days	11,000	44,000	US\$	Metric Tons	
Butane FOB AG 20-40 days cargo Month to Date	PMUDQ00		FOB	Arab Gulf	20-40 days	11,000	44,000	US\$	Metric Tons	
Butane FOB AG 20-40 days cargo vs Saudi Butane CP M1	PMABG00	PMUEK03	FOB	Arab Gulf	20-40 days	11,000	44,000	US\$	Metric Tons	
Butane FOB Saudi Arabia CP	PTAAF10		FOB	Saudi Arabia				US\$	Metric Tons	
LPG Refrigerated 11:11 CFR North Asia 30-45 days	AASG000	AASG003	CFR	Japan/Korea	30-45 days	22,000	44,000	US\$	Metric Tons	
LPG Refrigerated 11:11 CFR North Asia 45-60 days	AASGP00	AASGP03	CFR	Japan/Korea	45-60 days	22,000	44,000	US\$	Metric Tons	
LPG Refrigerated 11:11 CFR North Asia 60-75 days	AASGQ00	AASGQ03	CFR	Japan/Korea	60-75 days	22,000	44,000	US\$	Metric Tons	
LPG Refrigerated 11:11 CFR North Asia 30-60 days cargo	AASGN00	AASGN03	CFR	Japan/Korea	30-60 days	22,000	44,000	US\$	Metric Tons	
LPG Pressurized CFR Philippines 7-15 days	AAWUX00	AAWUX03	CFR	Philippines	7-15 days	1,800	2,500	US\$	Metric Tons	
LPG Pressurized CFR Philippines vs Saudi Propane-Butane CP Mo01	AAWUY00	AAWUY03	CFR	Philippines	7-15 days	1,800	2,500	US\$	Metric Tons	

LPG

Assessment	CODE	Mavg	Pavg Wavg CONTRACT BAS	IS LOCATION	DELIVERY PERIOD	MIN SIZE	MAX SIZ	E CURRENCY	UOM	CONV
LPG Pressurized CFR Vietnam 7-15 days	AAWUV00	AAWUV03	CFR	Vietnam	7-15 days	1,800	2,500	US\$	Metric Tons	
LPG Pressurized CFR Vietnam vs Saudi Propane-Butane CP Mo01	AAWUW00	AAWUW03	CFR	Vietnam	7-15 days	1,800	2,500	US\$	Metric Tons	
LPG Pressurized FOB East China 7-15 days	AAWUZ00	AAWUZ03	FOB	China	7-15 days	1,800	2,500	US\$	Metric Tons	
LPG Pressurized FOB East China vs Saudi Propane-Butane CP Mo01	AAWVA00	AAWVA03	FOB	China	7-15 days	1,800	2,500	US\$	Metric Tons	
LPG Pressurized FOB Singapore 7-15 days	AAWVD00	AAWVD03	FOB	Singapore	7-15 days	1,800	2,500	US\$	Metric Tons	
LPG Pressurized FOB Singapore vs Saudi Propane-Butane CP Mo01	AAWVE00	AAWVE03	FOB	Singapore	7-15 days	1,800	2,500	US\$	Metric Tons	
LPG Pressurized FOB South China 7-15 days	AAWVB00	AAWVB03	FOB	China	7-15 days	1,800	2,500	US\$	Metric Tons	
LPG Pressurized FOB South China vs Saudi Propane-Butane CP Mo01	AAWVC00	AAWVC03	FOB	China	7-15 days	1,800	2,500	US\$	Metric Tons	

LPG

Platts assesses the value of large cargoes of propane and butane supplied on refrigerated tankers in both the Middle East and the Asia Pacific regions. Additionally, Platts publishes assessments for the small-cargo LPG market in the Asia Pacific, reflecting the value of mixed LPG cargoes carried in pressurized ships.

Platts considers outright prices and floating prices in its assessments. Floating price transactions are most commonly based on a premium or discount to Saudi Aramco's monthly export Contract Prices (CPs) for propane and butane.

Platts Middle East propane assessments reflect specifications that conform to typical specifications issued by Saudi Aramco, including: minimum 95% propane content, maximum 4% butane content and maximum 0.1% olefin content. Butane specifications reflected in Platts assessments conform to typical specifications issued by Saudi Aramco, including: maximum 2% propane content, maximum 29% isobutane content, minimum 68% normal butane content and maximum 0.1% olefin content.

On January 2, 2020, Platts began reflecting new specifications for propane and butane for all its Asian refrigerated LPG

assessments. The table for the new specifications can be found in this guide. Platts also made a series of changes to its suite of Asian LPG assessments. Platts renamed all its Japan refrigerated propane and butane assessments to North Asia, while at the same time discontinued its CFR South Korea assessments. The changes are in response to shifts in demand and supply fundamentals in the North Asian LPG market over the last few years.

Platts assessments reflect standard terms and conditions for FOB spot transactions lifting from the Arab Gulf and CFR spot transactions into Japan, South Korea, South China and Taiwan main ports (see locations in table). Cost and freight are typically defined by Incoterms. Platts assessments reflect transactions based on letter of credit as needed with typically 30-day terms.

Refrigerated LPG: In the refrigerated LPG markets, propane and butane are typically supplied on Very Large Gas Carriers (VLGCs), which are typically 44,000 mt, and commonly segregated into four tanks of 11,000 mt each on each ship. Each tank will typically contain either propane or butane. Platts refrigerated assessments reflect the value of refrigerated propane and refrigerated butane as stand-alone, minimum 11,000 mt trade sizes. Multiples of 11,000 mt, up to 44,000 mt, are considered for assessment and normalized for size as needed. Additionally, Platts also assesses the value of combination refrigerated cargoes where propane and butane are both committed for delivery, typically in evenly split 22,000 mt cargo sizes.

In Asia's delivered markets, Platts assesses cargoes for delivery in three half-month cycles. The cycles generally fall 30-45 days forward, 45-60 days forward and 60-75 days forward on the first day of every roll. Assessments roll forward on the first business day of a new month, and the first business day after the 15th of every month. As an example, from April 1 until April 15, Platts assessments would be for H1 May, H2 May and H1 June. On April 16 (or the first publishing day after the 15th), assessment cycles move forward by a half month to become H2 May, H1 June and H2 June. Platts headline cargo assessment is produced by averaging the first two half-month assessments.

In the Middle East spot LPG market, Platts assesses the outright value of spot cargoes for loading on a FOB basis, 20-40 days after the date of publication. Platts also publishes an assessment of the premium or discount for spot cargoes loading 20-40 days forward in the Middle East. These premiums and discounts reflect the value to be applied to the Month 1 Saudi Aramco CP during dates of loading.FOB AG: Export terminals including Ras Tanura and Yanbu in Saudi Arabia, and any safe port in Qatar.

CFR North Asia: Platts 11:11 refrigerated LPG cargo assessments reflect the value of cargoes delivered to main ports in North Asia.

Pressurized LPG: In the pressurized markets, Platts assesses the values of mixed LPG cargoes in Asia, reflecting a typical mix of 30% propane, 70% butane.

Platts assessments reflect the value of mixed, pressurized LPG cargoes for delivery CFR Vietnam (basis CFR Ho Chi Minh City) and CFR Philippines (basis CFR Bataan). Platts also assesses the value of such cargoes loading from East China (basis FOB Shanghai); South China (basis FOB Shenzhen) and FOB Singapore. These pressurized cargo assessments reflect the value of parcels to be delivered 7-15 days forward from the date of publication. These values are published as outright price assessments. Platts also publishes an assessment for the premium or discount for cargoes relative to the Saudi Aramco CP that prevails at the time the cargo is delivered or loaded.

CFR Vietnam: Pressurized LPG storage terminals in Vietnam, normalized to Ho Chi Minh City

CFR Philippines: Pressurized LPG storage terminals in the Philippines, normalized to Bataan

FOB East China: Pressurized LPG storage terminals in East China, normalized to Shanghai

FOB South China: Pressurized LPG storage terminals in South China, normalized to Shenzhen

FOB Singapore: Pressurized LPG storage terminals in Singapore

PROPANE

Property	Unit	Specifications
Ethane	Liq. Vol. %	2.0 max
Propane	Liq. Vol. %	90.0 min
Butanes & Heavier	Liq. Vol. %	4 max
Propylene	Liq. Vol. %	5.0 max
Vapor Pressure	psig at 100°F	208 max
Volatile Residue:		
Temperature @ 95% evaporation	°F	-37 max
Residue on evaporation of 100 ml	ml	0.05 max
Oil Stain Observation		Pass
Corrosion, Copper Strip		No.1
Total Sulfur	ppm wt.	30 max
Water Content		No Free Water
Hydrogen Sulfide	ppm wt.	5.0 max

BUTANE

Property	Unit	Specifications
Propane & Lighter	Vol.%	2 max.
Isobutane	Vol.%	8 min, 29 max.
Normal Butane	Vol. %	68 min, 92 max.
Pentanes & Heavier	Liq. Vol. %	1.5 max
Hexanes & Heavier	Liq. Vol. %	0.050 max
Total Olefins	Liq. Vol. %	0.35 max
Butadiene	Liq. Vol. %	0.01 max
Total Oxygenates	ppm wt.	50 max
Methanol	ppm wt.	50 max
IPA & Heavier Alcohols	ppm wt.	5 max
MTBE & Other Ethers	ppm wt.	2 max
Other Oxygenates	ppm wt.	5 max
Total Sulfur	ppm wt.	140 max
Water Content		No Free Water
Fluoride	ppm wt.	1 max
Vapor Pressure at 100°F	psig	70 max
Volatile Residue:		
Temperature @ 95% evaporation	°F	36 max
Corrosion, Copper Strip		No.1

GASOLINE

Assessment	CODE	Mavg	Pavg	Wavg C	ONTRACT BASIS	LOCATION	DELIVERY PERIOD	MIN SIZE	MAX SIZE	CURRENCY	UOM	CONV
Gasoline Unl 91-92 C+F Japan Cargo	PGACW00	PGACW03		С	+F	Japan		50,000	150,000	US\$	Barrels	8.5
Gasoline Unl 92 FOB Spore Cargo	PGAEY00	PGAEY03		F	ЮВ	Singapore	15-30 days	50,000	150,000	US\$	Barrels	8.5
Gasoline Unl 92 MOPS strip	AAXEQ00	AAXEQ03				Singapore				US\$	Barrels	8.5
Gasoline Unl 92 FOB Spore Cargo vs Gasoline Unl 92 MOPS strip	AAXER00	AAXER03		F	ЮВ	Singapore	15-30 days	50,000	150,000	US\$	Barrels	8.5
Gasoline Unl 92 FOB Spore Cargo vs Naphtha MOPS strip	AAPKG00	AAPKG03		F	ЮВ	Singapore	15-30 days	50,000	150,000	US\$	Barrels	8.5
Gasoline Unl 92 FOB Spore Cargo \$/mt	AAXNA00	AAXNA03		F	ЮВ	Singapore	15-30 days	5,000	20,000	US\$	Metric Tons	8.5
Gasoline Unl 92 (500 ppm) FOB Spore Cargo Cash Diff	PGAFY00	PGAFY03		F	ОB	Singapore	15-30 days	100,000	200,000	US\$	Barrels	8.5
Gasoline 92 RON Unl MOP West India \$/b	AARBP00	AARBP03		F	ЮВ	India		50,000	150,000	US\$	Barrels	8.5
Gasoline 92 RON Unl MOP West India \$/mt	AARBQ00	AARBQ03		F	OB	India		5,000	20,000	US\$	Metric Tons	8.5
Gasoline Unl 92 C+F Australia Cargo	AACZF00	AACZB00		С	+F	Australia		50,000	150,000	US\$	Barrels	8.5
Gasoline Unl 92 FOB South China	AAICW00	AAICX00		F	ОB	China	20-35 days	30,000	40,000	US\$	Metric Tons	8.5
Gasoline Unl 95 FOB Spore Cargo	PGAEZ00	PGAEZ03		F	OB	Singapore	15-30 days	50,000	150,000	US\$	Barrels	8.5
Gasoline Unl 95 FOB Spore Cargo vs Naphtha MOPS strip	AAPKF00	AAPKF03		F	OB	Singapore	15-30 days	50,000	150,000	US\$	Barrels	8.5
Gasoline Unl 95 FOB Spore Cargo vs Gasoline Unl 95 MOPS strip	AGUMA00	AGUMA03		F	OB	Singapore	15-30 days	50,000	150,000	US\$	Barrels	8.5
Gasoline Unl 95 MOPS strip	AGUMS00	AGUMS03				Singapore				US\$	Barrels	8.5
Gasoline 95 RON Unl MOP West India \$/b	AAQWH00	AAQWH03		F	ЮВ	India		50,000	150,000	US\$	Barrels	8.5
Gasoline 95 RON Unl MOP West India \$/mt	AAQWI00	AAQWI03		F	ЮВ	India		5,000	20,000	US\$	Metric Tons	8.5
Gasoline Unl 95 C+F Australia Cargo	AACZH00	AACZG00		С	λ+F	Australia		50,000	150,000	US\$	Barrels	8.5
Gasoline Unl 95 C+F Japan Cargo	PGAQQ00	PGAQR03		С	÷+F	Japan		50,000	150,000	US\$	Barrels	8.5
Gasoline Unl 95 FOB Korea Cargo	PGAQ000	PGAQP03		F	OB	South Korea	15-30 days	50,000	150,000	US\$	Barrels	8.5
Gasoline 92 RON Unl FOB Arab Gulf Cargo	AAGJA00	AAGJA03		F	OB	Arab Gulf				US\$	Barrels	8.5
Gasoline 92 RON Unl FOB Arab Gulf vs MOPAG Gasoline	AAGZA00	AAGZA03		F	ЮВ	Arab Gulf	20-40 days	200,000	300,000	US\$	Barrels	8.5
Gasoline 95 RON Unl CFR Arab Gulf vs MOPAG Gasoline	AAWUK00	AAWUK03		С	FR	Arab Gulf	20-40 days	200,000	300,000	US\$	Barrels	8.5
Gasoline 95 RON Unl FOB Arab Gulf Cargo	AAICY00	AAICZ00		F	OB	Arab Gulf				US\$	Barrels	8.5
Gasoline 95 RON Unl FOB Arab Gulf vs MOPAG Gasoline	AAWUJ00	AAWUJ03		F	ЮВ	Arab Gulf	20-40 days	200,000	300,000	US\$	Barrels	8.5
Gasoline 92 RON FOB Fujairah Cargo \$/b	RFJFS00	RFJFSØ3		F	ЮВ	Fujairah	20-40 days	200,000	300,000	US\$	Barrels	8.5
Gasoline 92 RON Arab Gulf Strip \$/b	RAGTA00	RAGTA03				Arab Gulf				US\$	Barrels	8.5
Gasoline 95 RON FOB Fujairah Cargo	AFUJA00	AFUJA03		F	ЮВ	Fujairah	20-40 days	200,000	300,000	US\$	Barrels	8.5
Gasoline 95 RON MOPAG Strip	AFUJB00	AFUJB03				Arab Gulf				US\$	Barrels	8.5
Gasoline Unl 97 FOB Spore Cargo	PGAMS00	PGAMS03		F	ЮВ	Singapore	15-30 days	50,000	150,000	US\$	Barrels	8.5
Gasoline Unl 97 FOB Spore Cargo vs Naphtha MOPS strip	AAPKE00	ΑΑΡΚΕ03		F	ЮВ	Singapore	15-30 days	50,000	150,000	US\$	Barrels	8.5
Gasoline Unl 91 Non-oxy FOB Spore Cargo \$/b	AAYNA00	AAYNA03		F	ЮВ	Singapore	15-30 days	50,000	150,000	US\$	Barrels	8.5
Gasoline Unl 91 Non-oxy FOB Spore Cargo vs MOPS Gasoline 92 Strip \$/b	AAYNB00	AAYNB03		F	ЮВ	Singapore	15-30 days	50,000	150,000	US\$	Barrels	8.5
Gasoline 95 RON CFR South Africa Cargo	AAQWW00	AAQWW03		С	+F	South Africa		200,000	300,000	US\$	Barrels	8.5

Gasoline

Singapore gasoline assessments: Platts FOB Singapore assessments reflect "FOB Straits" bids, offers and transactions. For FOB Straits transactions, sellers are required to nominate loading from one of the locations in Singapore and Malaysia that are approved for the Platts Market on Close assessment process as a loading point.

Platts FOB Singapore gasoline assessments reflect standard industry specifications, which are summarized in the table in this section. The specifications listed are not comprehensive on all possible specification elements, and cargoes reflected in the Platts assessment processes must at all times be deemed

FOB AG GASOLINE SPECIFICATIONS

Property	Unit	Standard
Research Octane Number		Min 92, Min 95
Motor Octane Number		Min 82, Min 85
Appearance		Clear
Color		Undyed
Corrosion, Copper Strip (3 Hrs at 50°C)	1	Max 1
Density at 15°C	g/ml	0.72-0.78
Distillation		
10% vol recovered at (°C)	°C	Max 65
50% vol recovered at (°C)	°C	Min 80, Max 120
90% vol recovered at (°C)	°C	Max 180
End point (°C)	°C	Max 210
Residue	vol %	Max 2
Doctor Test		Negative
Gum, Existent	mg/100 ml	Max 4
Induction Period	minutes	Min 480
Lead Content	gPb/l	Max 0.013
Reid Vapor Pressure at 37.8° C	psi	Max 9
Sulfur	wt %	Max 0.01
Allowed oxygenates/MTBE (If added)	vol %	Max 15 (of which maximum
		MTBE content of 10.0)
Alcohol		No additions of any alcohol
Aromatics	vol %	Max 35
Benzene	vol %	Max 1
Olefins	vol %	Max 18
Odor		Marketable
Additives		No metal additives;
		no metal octane boosters

to fall within industry standards, including merchantability of the product. Grades which are not widely merchantable -- for instance, gasoline with unusual additives, including MMT, secondary butyl acetate and methyl acetate or unusually high quantities of certain additives or blendstocks which are not typical -- will not be reflected in the assessments. Transactions. bids and offers of a minimum of 50,000 barrels are considered for assessment. The maximum cargo size for any one bid or offer is 150,000 barrels. These assessments reflect gasoline for loading 15-30 days forward from the date of publication. Market participants should specify loading for a five-day date range at the time of providing a bid or offer for publication in the Platts assessment process. In circumstances where Platts reflects a volume range in its Asian and Middle East oil product assessments, the smallest volume within the published guidelines will take precedence in the assessment process. For example, a bid for 50,000 barrels of gasoline on a FOB Straits basis would take priority over an offer for 150,000 barrels, in cases where the bid and offer might cross due to volume differences

China gasoline assessment: Platts gasoline assessment reflects 30,000-40,000 mt MR-sized 92 RON oxygenated gasoline cargoes loading 20-35 days forward from the date of publication, on FOB South China basis. The ports reflected in the South China assessment include Huizhou, Dongguan, Qinzhou, Quanzhou and Hainan. Cargo loadings from these ports will be considered for assessment, while loadings from other ports will be normalized to Huizhou basis. The 92 RON FOB South China assessment reflects guaranteed specifications adhering to China's National Phase 5 standards, where parameters include maximum 10 ppm sulfur content, benzene at maximum 1% by volume, aromatics at maximum 40% by volume and olefins at maximum 24% by volume. Cargoes that differ from this specification will be considered for assessment and normalized to reflect the above guality. This market typically trades at a differential to the Singapore 92 RON unleaded gasoline assessment. Platts FOB South China assessment is expressed in US\$/mt, rounded to the nearest 25 cents/mt using a conversion factor of 8.5.

FOB SINGAPORE GASOLINE SPECIFICATIONS

Property	Unit	Standard
Research Octane Number (ROI	N)	Min 92, Min 95, Min 97
Lead content	gPb/l	Max 0.013
Density@15°C	g/ml	Min 0.72
Reid Vapor Pressure	psi	Max 9.0
Distillation, degrees Celsius		
Initial Boiling Point	°C	Report
10% evaporated	°C	Max 74
50% evaporated	°C	Min 80, Max 127
90% evaporated	°C	Max 190
Final Boiling Point	°C	Max 215
Residue	% vol	Max 2.0
Loss	% vol	2
Odor		Marketable
Existent gum	mg/100 m	nl Max 4
Benzene content	% vol	Max 2.5
Sulfur	% wt	Max 0.005
Doctor Test		Negative
or Mercaptan sulfur	wt.ppm	Max 15
Mercaptan sulfur	% wt	Max 0.0015
Copper corrosion (3 hours at 5	0°C)	Max 1
Induction period	minutes	Min 240
Oxygenates content	% vol	Max 14.0 (of which maximum
		MTBE content of 10.0)
Aromatics	% vol	40
Olefins	% vol	25
Color		Undyed, colorless to light yellow
Alcohol		No additions of any alcohol
Metallic Additives		None added
Acetone	ppm	Max 100

South Korea gasoline assessments: Platts assesses 95 RON unleaded gasoline FOB Korea. This market typically trades on a naphtha related basis.

Japan gasoline assessment: Platts 91-92 RON unleaded gasoline, for delivery on a C+F Chiba basis, is assessed as a netforward into Japan, using the FOB Singapore 92 RON unleaded gasoline as a base. A freight rate for 30,000 mt tankers is used. The freight value is divided by 8.5 and added to the Singapore base assessment.

Platts 95 RON unleaded C+F Chiba assessment is determined by assessing the gasoline market delivered into the Chiba region in Japan. Australia gasoline assessments: Platts assesses Australian 92 and 95 RON unleaded on a C+F Melbourne/Sydney basis. These assessments are determined on a netforward basis from FOB Singapore 92 and 95 RON unleaded assessments using a freight rate for 35,000 mt tankers. Freight rates are published daily in Platts Clean Tankerwire. See "Platts netback methodology in Asia and the Middle East" at the end of this document for more information on how these values are calculated.

India gasoline assessments: The Mean of Platts West India Netbacks (MOPWIN) assessment for 92 and 95 RON gasoline are derived by deducting freight costs from the assessments for the same products in Singapore. Although West India has a surplus of oil products for export, there remains only a sporadic flow of spot cargoes and insufficient local price formation to support independent spot prices on FOB West India basis. Platts therefore launched direct freight netbacks from the active trading hubs of Singapore and Japan, where daily prices are established from transparent and firm bids, offers and transactions between many active buyers and sellers. West Coast India-Singapore clean freight assessments used for generating the netback values can be found on Platts Global Alert.

Middle East gasoline assessments: Platts benchmark gasoline netback assessment is for 92 RON and 95 RON unleaded gasoline on a FOB Arab Gulf basis. These assessments are determined on a netback basis from FOB Singapore 92 RON and 95 RON unleaded assessments using a freight rate for 35,000 mt tankers. Freight rates are published daily in Platts Clean Tankerwire. See "Platts netback methodology in Asia and the Middle East" at the end of this document for more information on how these values are calculated. On May 18, 2020, Platts amended the methodology to include spot values and will only publish a zero or negative value for these netback benchmarks if prevailing market information demonstrates such values. This will mean that if a freight netback calculation would produce a value at or below zero, then Platts would consider relevant spot market information instead and use this in its assessment of FOB Arab Gulf values. Under this change, Platts would consider all gasoline grades together. This would

mean that if the netback calculation for any grade of gasoline would produce a value at or below zero, all grades of gasoline would be assessed based on spot market information.

Middle East gasoline assessments (differentials): Platts assesses spot premiums for FOB and CFR gasoline cargoes. These assessments, which are published as a spot market premium/discount to Platts existing 95 RON Middle East netback assessment, reflect the value of 95 RON gasoline cargoes, typically 200,000 to 300,000 barrels each, for loading or delivery 20-40 days forward from the date of publication. Platts considers bids, offers, transactions, and reports of transactions when assessing these spot market differentials. Platts also assesses a spot differential for FOB cargoes to its 92 RON Middle East netback assessment. This reflects the value of 92 RON gasoline cargoes typically 200,000 to 300,000 barrels each, for loading 20-40 days forward from the date of publication.

Cargoes loading from the following Arab Gulf ports are considered for inclusion in the assessments: Jubail, Jebel Ali, Mina Al Ahmadi, Shuaiba, Ras Tanura, Ruwais, Mina Abdulla, Sohar, Sitra, Fujairah, Ras Laffan and any safe and sound port within this geographic area. The assessments would be normalized to loadings in Fujairah for all products and in Bandar Abbas for Gasoline 95 CFR.

FOB Fujairah 92 RON gasoline assessment (outright): On September 1, 2020, Platts launched a new FOB Fujairah 92 RON gasoline assessment and monthly average FOB Fujairah 92 RON gasoline assessment, as well as a daily 92 RON gasoline Arab Gulf strip and a monthly average 92 RON gasoline Arab Gulf strip. The outright assessment reflects the value of 92 RON gasoline cargoes, typically 200,000 to 300,000 barrels each, for loading 20-40 days forward from the date of publication. Market participants should specify loading for a five-day date range at the time of submitting a bid or offer for publication. Platts will only publish offers where sellers specify at least one and no more than three representative load points and will only publish bids where buyers specify at least three representative load

FOB SINGAPORE 91 RON NON OXY SPECIFICATIONS

Property	Unit	Standard
Research Octane Number (RON)		Min 91
Motor Octane Number (MON)		Min 81
Lead content	gPb/l	Max 0.013
Density@15°C	g/ml	Report
Reid Vapor Pressure	psi	Max 9
Distillation, degrees Celsius		
Initial Boiling Point	°C	Report
10% evaporated	°C	Max 65
50% evaporated	°C	Min 74, Max 115
90% evaporated	°C	Max 183
Final Boiling Point	°C	Max 215
Residue	% vol	Max 2.0
Loss	% vol	2
Odor		Marketable
Existent gum	mg/100ml	Max 4
Benzene content	% vol	Max 1
Sulfur	% wt	Max 0.015
Doctor Test		Negative
or Mercaptan sulfur	wt.ppm	Max 15
Mercaptan sulfur	% wt	Max 0.0015
Copper corrosion (3 hours at 50°C))	Max 1
Induction period	minutes	Min 360
Oxygenates as components	% vol	Ni
Oxygenates as contaminants	% vol	Max 1.0
Aromatics	% vol	17-42
Olefins	% vol	Max 18
Color		Undyec
Alcohol		No addition of any alcoho
Metallic Additives		None addec
Acetone	ppm	Max 100

points. For all trades reported through the Platts MOC process, the seller would declare the terminal 12 days prior to loading. The buyer would nominate the vessel seven days prior to loading and narrow the loading window to three days, subject to terminal acceptance. The outright assessment equals the sum of Middle East 92 RON gasoline spot differential (premium/discount) and the MOPAG 92 RON gasoline strip. The MOPAG Strip is calculated using 92 RON gasoline derivatives that settle on the Platts Middle East 92 RON gasoline netback assessment. Platts also publishes assessments for MOPAG 92 RON gasoline derivatives for Balance Month, Month 1 and Month 2, as well as the MOPAG 92 RON gasoline strip.

FOB Fujairah 95 RON gasoline assessment (outright): The assessment reflects the value of 95 RON gasoline cargoes, typically 200,000 to 300,000 barrels each, for loading 20-40 days forward from the date of publication. Market participants should specify loading for a five-day date range at the time of submitting a bid or offer for publication. Platts will only publish offers where sellers specify at least one and no more than three representative load points and will only publish bids where buyers specify at least three representative load points. For all trades reported through the Platts MOC process, the seller would declare the terminal 12 days prior to loading. The buyer would nominate the vessel seven days prior to loading and narrow the loading window to three days, subject to terminal acceptance. The outright assessment equals the sum of Middle East 95 RON gasoline spot differential (premium/discount) and the MOPAG 95 RON gasoline strip. The MOPAG Strip is calculated using 95 RON gasoline derivatives that settle on the Platts Middle East 95 RON gasoline netback assessment. Platts also publishes assessments for MOPAG 95 RON gasoline derivatives for Balance Month, Month 1 and Month 2, as well as the MOPAG

95 RON gasoline strip.

South Africa gasoline assessment: Platts publishes a 95 RON gasoline assessment on CFR South Africa basis. The assessment reflects cargoes of 200,000 to 300,000 barrels each, on a delivered basis to South Africa. Platts calculates the netforward 95 RON CFR South Africa assessment by applying the Platts daily assessment for AG-South Africa 35,000 mt clean tanker assessment to the FOB Fujairah 95 RON gasoline assessment.

NAPHTHA

Assessment	CODE	Mavg	Pavg	Wavg	CONTRACT BASIS	LOCATION	DELIVERY PERIOD	MIN SIZE	MAX SIZE	CURRENCY	UOM	CONV
Naphtha C+F Japan Cargo 30-45 Days	PAAAE00	PAAAE03			C+F	Japan	30-45 days	25,000		US\$	Metric Tons	9
Naphtha C+FJapan Cargo 45-60 Days	PAAAF00	PAAAF03			C+F	Japan	45-60 days	25,000		US\$	Metric Tons	9
Naphtha C+FJapan Cargo 60-75 Days	PAAAG00	PAAAG03			C+F	Japan	60-75 days	25,000		US\$	Metric Tons	9
Naphtha C+FJapan Cargo	PAAAD00	PAAAD03			C+F	Japan	45-75 days	25,000		US\$	Metric Tons	9
Naphtha MOPJ strip C+F Japan	AAXFH00	AAXFH03				Japan				US\$	Metric Tons	9
Naphtha C+FJapan vs Naphtha MOPJ strip	AAXFI00	AAXFI03			C+F	Japan	45-75 days	25,000		US\$	Metric Tons	9
Naphtha C+FJapan Premium/Discount	PAADI00	PAADJ03			C+F	Japan	30-60 days	25,000		US\$	Metric Tons	9
Naphtha C+FJapan Cargo cts/gal	PAABD00	PAABD03			C+F	Japan	45-75 days	25,000*		US cents	Gallon	3.78
Naphtha (min 70%) C+F Japan Cargo	NCJCA00	NCJCA03			C+F	Japan	45-75 days	25,000		US\$	Metric Tons	9
Naphtha (min 70%) C+F Japan Premium/Discount	NCJCB00	NCJCB03			C+F	Japan	30-60 days	25,000		US\$	Metric Tons	9
Naphtha C+F Korea Cargo	PAADE00	PAADF03			C+F	South Korea	30-60 days	25,000		US\$	Metric Tons	9
Naphtha C+F Korea Cargo Premium/Discount	PAADG00	PAADH03			C+F	South Korea	30-60 days	25,000		US\$	Metric Tons	9
Naphtha FOB Arab Gulf Cargo	PAAAA00	PAAAA03			FOB	Arab Gulf				US\$	Metric Tons	9
Naphtha FOB Arab Gulf vs MOPAG Naphtha	AAPKH00	AAPKH03			FOB	Arab Gulf	20-40 days	25,000	75,000	US\$	Metric Tons	9
Naphtha FOB Arab Gulf Cargo cts/gal	PAABA00	PAABA03			FOB	Arab Gulf				US cents	Gallon	3.78
Naphtha FOB Fujairah Cargo \$/mt	NFJSA00	NFJSA03			FOB	Fujairah	20-40 days	25,000	75,000	US\$	Metric Tons	9
Naphtha Arab Gulf Strip \$/mt	NFJTA00	NFJTA03				Arab Gulf				US\$	Metric Tons	9
Naphtha FOB Singapore Cargo	PAAAP00	PAAAP03			FOB	Singapore	15-30 days	100,000	250,000	US\$	Barrels	9
Naphtha FOB Singapore Cargo \$/mt	PAABP00	PAABP03			FOB	Singapore	15-30 days	10,000	30,000	US\$	Metric Tons	9
Naphtha FOB Singapore Cargo cts/gal	PAACP00	PAACP03			FOB	Singapore	15-30 days	100,000**	250,000**	US cents	Gallon	0.42
Naphtha MOPS strip	ΑΑΡΚΑΘΘ	AAPKA03				Singapore				US\$	Barrels	9
Naphtha CFR Singapore	AAOVF00	AAOVF03			CFR	Singapore	15-30 days	50,000	150,000	US\$	Barrels	9
Naphtha CFR Singapore vs Naphtha MOPS strip	AAOVG00	AAOVG03			CFR	Singapore	15-30 days	50,000	150,000	US\$	Barrels	9
Naphtha LR2 FOB Arab Gulf Cargo	AAIDA00	AAIDB00			FOB	Arab Gulf				US\$	Metric Tons	9
Naphtha MOP West India \$/b	AAQWJ00	AAQWJ03			FOB	India		200,000		US\$	Barrels	9
Naphtha MOP West India \$/mt	AAQWK00	AAQWK03			FOB	India		25,000		US\$	Metric Tons	9
*in mt **in barrels												

Naphtha

Japan naphtha: Platts assesses the value of naphtha for delivery on a C+F basis into Japan, reflecting three major halfmonth cycles, and an additional single "cargo" value reflecting two of these cycles. The three half-month cycles assessed are: 30-45 days forward; 45-60 days forward and 60-75 days forward. Assessments roll forward on the first business day of a new month, and the first business day after the 15th of every month. For example, over April 1-15, Platts assesses H2 May, H1 June and H2 June. These assessments would be rolled on the first business day after April 15 to H1 June, H2 June and H1 July.

The main cargo assessment for Japan (Mean of Platts Japan, or MOPJ) reflects the lows and the highs of the second and third published cycles. This maintains a consistency in the rollovers and sets the benchmark as a 45-75 day market.

Platts also assesses a spot premium or discount to reflect the value of cargoes delivered into Japan. The differential reflects the delivery of 25,000 mt cargoes in the first and second CFR Japan cycles, and is expressed as a differential against MOPJ. Effective April 8, 2022, this assessment no longer reflects Russia-origin product.

Platts C+F Japan naphtha specifications are defined in the table in this section.

Japan naphtha (min 70%): Since April 16, 2021, Platts started publishing an outright price and a spot cash differential for this new grade to reflect greater spot market liquidity for higher paraffinic naphtha. The new assessments, called Naphtha (min 70%) C+F Japan Cargo and Naphtha (min 70%) C+F Japan Premium/Discount, are published alongside the existing Platts C+F Japan benchmark naphtha assessments, which reflect naphtha with minimum 65% paraffin content.

The outright assessment for C+F Japan naphtha (min 70%) reflects 25,000 mt cargoes for delivery 45-75 days forward from the date of publication.

The spot cash differential for C+F Japan naphtha (min 70%) reflects 25,000 mt cargoes for delivery to Japan 30-60 days forward from the date of publication and is expressed as a differential against MOPJ. Effective April 8, 2022, this assessment no longer reflects Russia-origin product.

Platts C+F Japan naphtha (min 70%) specifications are defined in the table in this section.

South Korea naphtha: Platts assesses the value of naphtha for delivery on a C+F basis into South Korea (Mean of Platts Korea, or MOPK) as a cash differential against MOPJ, and expressed as an outright price. Platts also assesses a spot premium or discount to reflect the value of cargoes delivered into South Korea. The differential reflects the delivery of 25,000 mt cargoes in the 30-60 days forward from the date of publication, and is expressed as a differential against MOPJ. Effective April 8, 2022, this assessment no longer reflects Russia-origin product.

Platts C+F South Korea naphtha specifications are defined in the table in this section.

Middle East naphtha: Platts benchmark Middle Eastern assessments are established as a freight netback. The FOB Arab Gulf assessments (for both 55,000 mt (Naphtha) and 75,000 mt (Naphtha LR2), are assessed as freight netbacks

PLATTS CFR JAPAN NAPHTHA SPECS

Property	Unit	Standard
Paraffins	% vol	Min 65
Specific gravity at 60°F	g/ml	0.65-0.74
Reid Vapor Pressure	Psi	Max 13
Sulfur	wt.ppm	Max 650
Initial boiling point	°C	Min 25
Final boiling point	°C	Max 204
Chlorine content	wt.ppm	Max 1
Mercury	wt.ppb	Max 1
Arsenic	wt.ppb	Max 20
Olefins	% vol	Max 1
N-paraffins	% vol	Min 30
Color	Saybolt	Min +20
Lead	wt.ppb	Max 150
Total oxygenates	wt.ppm	Max 50 (eg: TAME, MTBE and/or ETBE)
Carbon Disulfide	wt.ppm	- Max 3

PLATTS CFR JAPAN NAPHTHA (MIN 70%) SPECS

Property	Unit	Standard
Paraffins	% vol	Min 70
Specific gravity at 60°F	g/ml	0.65-0.74
Reid Vapor Pressure	Psi	Max 13
Sulfur	wt.ppm	Max 650
Initial boiling point	°C	Min 25
Final boiling point	°C	Max 204
Chlorine content	wt.ppm	Max 1
Mercury	wt.ppb	Max 1
Arsenic	wt.ppb	Max 20
Olefins	% vol	Max 1
N-paraffins	% vol	Min 30
Color	Saybolt	Min +20
Lead	wt.ppb	Max 150
Total oxygenates	wt.ppm	Max 50 (eg: TAME, MTBE and/or ETBE)
Carbon Disulfide	wt.ppm	Max 3

from MOPJ. Platts uses its daily assessments of the freight market (published in the Platts Clean Tankerwire) to determine the netback. See "Platts netback methodology in Asia and the Middle East" at the end of this document for more information on how these values are calculated. On May 18, 2020, Platts amended the methodology to include spot values and will only publish a zero or negative value for these netback benchmarks if prevailing market information demonstrates such values. This will mean that if a freight netback calculation would produce a value at or below zero, then Platts would consider relevant

PLATTS CFR SOUTH KOREA NAPHTHA SPECS

Property	Unit	Standard
Paraffins	% vol	Min 70
Specific gravity at 60°F	g/ml	0.65-0.74
Reid Vapor Pressure	psi	Max 13
Sulfur	wt.ppm	Max 650
Initial boiling point	°C	Min 25
Final boiling point	°C	Max 204
Chlorine content	wt.ppm	Max 1
Mercury	wt.ppb	Max 1
Arsenic	wt.ppb	Max 20
Olefins	% vol	Max 1
N-paraffins	% vol	Min 30
Color	Saybolt	Min +20
Lead	wt.ppb	Max 150
Total oxygenates	wt.ppm	Max 50 (eg: TAME, MTBE and/or ETBE)
Carbon Disulfide	wt.ppm	- Max 3

PLATTS FOB AG NAPHTHA SPECIFICATIONS

Property	Unit	Standard
Color	Saybolt	Min +20
Density at 15 deg C	g/ml	Min 0.65, Max 0.73
Distillation		
Initial Boiling Point	deg C	Min 25
10% vol recovered	deg C	Report
50% vol recovered	deg C	Min 50, Max 110
90% vol recovered	deg C	Min 75, Max 150
End point	deg C	Max 190
Lead content	wt.ppb	Max 50
PONA		
Aromatics	vol%	Max 15
Naphthenes	vol%	Report
Olefins	vol%	Max 1
Paraffins	vol%	Min 70
N-paraffins	vol%	Report
Reid Vapor Pressure at 37.8 deg C	psi	Max 13
Sulfur, Total	wt.ppm	Max 400
Mercury	wt.ppb	Max 1
Total oxygenates	wt.ppm	Max 50 (eg: TAME, MTBE
		and/or ETBE)
Chloride	wt.ppm	Max 1
Arsenic	wt.ppb	Max 20
Carbon disulfide	wt.ppm	Max 3

spot market information instead and use this in its assessment of FOB Arab Gulf values. Under this change, Platts would also consider all naphtha cargo sizes together. This would mean that if the netback calculation for any cargo size of naphtha would produce a value at or below zero, all cargo sizes of naphtha would be assessed based on spot market information.

Middle East naphtha (differential): Platts assesses a spot differential for FOB Arab Gulf naphtha cargoes. This assessment, which is published as a spot market premium/discount to Platts existing Middle East 55,000 mt naphtha netback assessment, reflects the value of naphtha cargoes, between 25,000 mt and 75,000 mt, for loading 20-40 days forward from the date of publication. Platts considers bids, offers, transactions, and reports of transactions when assessing this spot market differential.

Cargoes loading from the following Arab Gulf ports would be considered for inclusion in the assessments: Jubail, Jebel Ali, Mina Al Ahmadi, Shuaiba, Ras Tanura, Ruwais, Mina Abdulla, Sohar, Sitra, Fujairah, Ras Laffan and any safe and sound port within this geographic area.

FOB Fujairah naphtha assessment (outright): On September 1, 2020, Platts launched a new FOB Fujairah naphtha assessment and monthly average FOB Fujairah naphtha assessment, as well as a daily naphtha Arab Gulf strip and a monthly average naphtha Arab Gulf strip. The new outright assessment reflects cargo sizes of 25,000 to 75,000 mt for loading from Arab Gulf ports 20-40 days forward from the date of publication. Platts will only publish offers where sellers specify at least one and no more than three representative load points and will only publish bids where buyers specify at least three representative load points. In circumstances where Platts reflects a volume range in its Asian and Middle East oil product assessments, the smallest volume within the published guidelines will take precedence in the assessment process. For example, a bid for 25,000 mt of naphtha on a FOB Fujairah basis would take priority over an offer for 75,000 mt, in cases where the bid and offer might cross due to volume differences. For all trades reported through the Platts MOC process, the seller would declare the terminal 12 days prior to loading. The buyer would nominate the vessel seven days prior to loading and narrow the loading window to three days, subject to terminal acceptance.

The outright assessment equals the sum of Middle East naphtha spot differential (premium/discount) and the MOPAG naphtha strip. The MOPAG Strip is calculated using naphtha derivatives that settle on the Platts Middle East naphtha netback assessment. Platts also publishes assessments for MOPAG naphtha derivatives for Balance Month, Month 1 and Month 2, as well as the MOPAG naphtha strip.

Platts FOB Fujairah and Middle East naphtha spot differential naphtha specifications are defined in the table in this section.

India naphtha: The Mean of Platts West India Netback (MOPWIN) assessment for naphtha is derived by deducting freight costs from the assessments for the same product in Japan. Although West India has a surplus of oil products for export, there remains only a sporadic flow of spot cargoes and insufficient local price formation to support independent spot prices on FOB West India basis. Platts therefore launched direct freight netbacks from the active trading hubs of Singapore and Japan, where daily prices are established from transparent and firm bids, offers and transactions between many active buyers and sellers. West Coast India-Japan clean freight assessments used for generating the netback values can be found in the Platts Clean Tankerwire.

Naphtha (Singapore): The benchmark FOB Singapore naphtha assessment is established using a freight netback from Japan. Platts converts the naphtha assessed in Japan in dollars per metric ton to dollars per barrel, using a conversion factor of 9. The calculation is as follows:

((First published cycle in Japan minus Singapore-Japan freight)/9) -\$0.05/barrel

The assessed freight is for a MR vessel of 30,000 mt. Port charges, otherwise imposed in Japan, are deducted in the FOB Singapore naphtha assessment and are set at 5 cents/b.

CFR SINGAPORE NAPHTHA SPECS

Property	Unit	Specification	Test Method
Density	kg/l	Min 0.660	ASTM D4052
Research Octane Number		Min 72.0	ASTM D2700
Total sulfur	wt.ppm	Max 250.0	ASTM D5453
Benzene content	% vol	Max 2.5	ASTM D5580
Distillation 50% evaporated	°C	Min 50	ASTM D86
Lead	wt ppb	13 Max.	ICP-MS
Arsenic	wt ppb	20 Max	ICP-MS
Initial Boiling Point	°C	25 min	ASTM D86
Final Boiling Point	°C	204 Max	ASTM D86
Mercury	wt ppb	Report	UOP 938
Paraffins	% vol	Report	ASTM D6839
Olefins	% vol	Report	ASTM D6839
Naphthenes	% vol	Report	ASTM D6839
Aromatics	% vol	Report	ASTM D6839
Oxygenated Compounds	% vol	0.2 max	ASTM D6839
Mercaptan sulfur	wt %	Max 0.001	ASTM D3227
Reid Vapor Pressure	psi	Max 13.0	ASTM D6378

Please also note that the implicit contango or backwardation between the cycles is also taken into account.

Platts FOB Singapore naphtha assessments are for 15-30 days forward from the date of publication on a rolling basis.

Thus on April 20, Platts would be assessing May 5 through May 20.

In a typical example:

On April 15:

Price in Japan: 1,349.00-1,349.50 (H2 May)

Less freight: 30.000

FOB Singapore: 1,319.25

Barrel basis: 146.58

Less costs: 146.53 or 146.50-146.55

On the day of the rollover of the cycles in Japan, that is, on the 1st and the 16th of the month, the FOB Singapore assessment will absorb the backwardation or contango of the lapsed cycle in Japan for five days inclusive of Saturday and Sunday. For example, on April 16, the contango between H2 May and H1 June is \$0.25/mt and assuming it remains constant throughout the five days. Platts factors in this contango on declining scale until April 20:

Day of month: 1st2nd3rd4th5th6th onwardsDay of month: 16th17th18th19th20th21st onwards

100% 80% 60% 40% 20% 0

Spot CFR Singapore naphtha: This assessment reflects the growth of naphtha imports into Singapore, with a significant volume used for blending into gasoline. The assessment reflects cargoes delivering into any approved Platts FOB Straits terminal 15-30 days ahead of the date of publication and of parcel size in the range of 50,000 to 150,000 barrels. Platts publishes the assessment as both an outright value and as a differential against the FOB Singapore Naphtha MOPS Strip. Effective April 8, 2022, this assessment no longer reflects Russia-origin product.

Specifications can be found in the table.

CFR delivery standards: For CFR Singapore assessments, buyers should nominate terminal for delivery 10 days before the

first day of delivery dates agreed at the time of trade. The seller should narrow the five-day delivery range to a three-day delivery range seven days before the first day of the narrowed delivery range. Platts also expects the seller to nominate the performing vessel seven days before the first day of the narrowed delivery range.

CFR deviations: A CFR buyer has the right to request a deviation of the ship to another port, provided the shipowner has granted, or has the ability to grant, the deviation to the charterer. Any incremental expenses associated with the deviation are borne by the buyer as he/she is initiating the request for the deviation. Charges incurred because of the deviation must be transparent and be granted at cost and in line with normal market practices. Platts will monitor such charges if they result in anomalies.

JET FUEL

Assessment	CODE	Mavg	Pavg	Wavg	CONTRACT BASIS	LOCATION	DELIVERY PERIOD	MIN SIZE	MAX SIZE	CURRENCY	UOM	CONV
Jet Kero FOB Spore Cargo	PJABF00	PJABF03			FOB	Singapore	15-30 days	100,000	250,000	US\$	Barrels	7.9
Jet Kero MOPS strip	AAPJZ00	AAPJZ03				Singapore				US\$	Barrels	7.9
Jet Kero FOB Spore vs Jet Kero MOPS strip	PJACU00	AAFDB00			FOB	Singapore	15-30 days	100,000	250,000	US\$	Barrels	7.9
Jet Kero MOP West India \$/b	AAQWL00	AAQWL03			FOB	India		100,000	250,000	US\$	Barrels	7.9
Jet Kero MOP West India \$/mt	AAQWM00	AAQWM03			FOB	India		10,000	30,000	US\$	Metric Tons	7.9
Jet Kero C+F Australia Cargo	AAFIY00	AAFIZ00			C+F	Australia		100,000	250,000	US\$	Barrels	7.9
Jet Kero C+F Japan Cargo	PJAAN00	PJAAN03			C+F	Japan		100,000	250,000	US\$	Barrels	7.9
Jet Kero C+F Japan Cargo vs Jet Kero MOPS strip	PAADK00	PAADL03			C+F	Japan		100,000	250,000	US\$	Barrels	7.9
Jet Kero FOB Korea Cargo	PJADG00	PJADH03			FOB	South Korea	15-30 days	100,000	250,000	US\$	Barrels	7.9
Jet Kero FOB Korea Cargo vs Jet Kero MOPS strip	PJADI00	PJADJ03			FOB	South Korea	15-30 days	100,000	250,000	US\$	Barrels	7.9
Jet Kero C+F South China Cargo	PJABQ00	PJABQ03			C+F	China		25,000	45,000	US\$	Metric Tons	7.9
Jet Kero C+F South China Cargo vs Jet Kero MOPS strip	AAWTW00	AAWTW03			C+F	China		200,000	400,000	US\$	Barrels	7.9
Jet Kero FOB Arab Gulf Cargo	PJAAA00	PJAAA03			FOB	Arab Gulf				US\$	Barrels	7.9
Jet Kero FOB Arab Gulf vs MOPAG Jet Kero	PJACV00	AAFDF00			FOB	Arab Gulf	20-40 days	200,000	300,000	US\$	Barrels	7.9
Jet Kero FOB Fujairah Cargo	AFUJF00	AFUJF03			FOB	Fujairah	20-40 days	200,000	300,000	US\$	Barrels	7.9
Jet Kero MOPAG Strip	AFUJG00	AFUJG03				Arab Gulf				US\$	Barrels	7.9
Jet Kero CFR South Africa Cargo	AAQWT00	AAQWT03			C+F	South Africa		200,000	300,000	US\$	Barrels	7.9

Jet fuel/kerosene

All Platts Asia and Middle East jet fuel/kerosene assessments reflect standard commercial Jet-A1 specifications, as defined by UK Ministry of Defence in DEFSTAN 91-091, unless otherwise stated.

Singapore jet fuel/kerosene: Platts FOB Singapore assessments reflect "FOB Straits" bids, offers and transactions. For FOB Straits transactions, sellers are required to nominate loading from one of the locations in Singapore and Malaysia that are approved for the Platts Market on Close assessment process as a delivery point.

Specific gravity is typically 0.8 g/ml. Singapore smoke point is typically 19-21, and premiums may be paid for higher smoke point and discounts for lower smoke point. Color specification for FOB Straits cargoes reflects a minimum of 18 Saybolt color guarantee.

The Singapore physical assessment reflects transactions, bids and offers of a minimum of 100,000 barrels, maximum 250,000 barrels, loading 15-30 days forward from the date of publication. Market participants should specify loading for a five-day date range at the time of submitting a bid or offer for publication. In circumstances where Platts reflects a volume range in its Asian and Middle East oil product assessments, the smallest volume within the published guidelines will take precedence in the assessment process. For example, a bid for 100,000 barrels of jet fuel/kerosene on a FOB Straits basis would take priority over an offer for 250,000 barrels, in cases where the bid and offer might cross due to volume differences.

The FOB Singapore premium/discount assessment takes into account physical cargo activities 15-30 days forward from the date of publication.

Middle East jet fuel/kerosene: FOB Arab Gulf is assessed as a

netback from the benchmark FOB Singapore assessment using 55,000 mt ship freight rate. Freight rate reported in the Platts Clean Tankerwire is used. See "Platts netback methodology in Asia and the Middle East" at the end of this document for more information on how these values are calculated. On May 18, 2020, Platts amended the methodology to include spot values and will only publish a zero or negative value for these netback benchmarks if prevailing market information demonstrates such values. This will mean that if a freight netback calculation would produce a value at or below zero, then Platts would consider relevant spot market information instead and use this in its assessment of FOB Arab Gulf values. Under this change, Platts would consider all jet fuel/kerosene cargo sizes together. This would mean that if the netback calculation for any cargo size of jet fuel/kerosene would produce a value at or below zero, all cargo sizes of jet fuel/kerosene would be assessed based on spot market information. On January 4, 2021, Platts discontinued the publication of its FOB Arab Gulf jet fuel/

kerosene LR2 netback assessment and its corresponding netback freight rate.

Middle East jet fuel/kerosene (differential): Platts assesses a spot differential for FOB Arab Gulf jet fuel/kerosene cargoes. This assessment, which is published as a spot market premium/ discount to Platts Middle East jet fuel/kerosene netback assessment, reflects the value of jet fuel/kerosene cargoes, typically 200,000 to 300,000 barrels each, for loading 20-40 days forward from the date of publication. Platts considers bids, offers, transactions, and reports of transactions when assessing this spot market differential.

Cargoes loading from the following Arab Gulf ports would be considered for inclusion in the assessments: Jubail, Jebel Ali, Mina Al Ahmadi, Shuaiba, Ras Tanura, Ruwais, Mina Abdulla, Sohar, Sitra, Fujairah, Ras Laffan and any safe and sound port within this geographic area.

FOB Fujairah jet fuel/kerosene assessment (outright): Platts assesses the outright value for jet fuel/kerosene cargoes on FOB Fujairah basis. The assessment reflects the value of jet fuel/ kerosene cargoes, typically 200,000 to 300,000 barrels each, for loading 20-40 days forward from the date of publication. Market participants should specify loading for a five-day date range at the time of submitting a bid or offer for publication. Platts will only publish offers where sellers specify at least one and no more than three representative load points and will only publish bids where buyers specify at least three representative load points. For all trades reported through the Platts MOC process, the seller would declare the terminal 12 days prior to loading. The buyer would nominate the vessel seven days prior to loading and narrow the loading window to three days, subject to terminal acceptance. The outright assessment equals the sum of Middle East jet fuel/kerosene spot differential (premium/discount) and MOPAG jet fuel/kerosene strip. The MOPAG strip is calculated using jet fuel/kerosene derivatives that settle on the Platts Middle East jet fuel/kerosene netback assessment. Platts also publishes assessments for MOPAG jet fuel/kerosene derivatives for Balance Month, Month 1 and Month 2, as well as the MOPAG jet fuel/kerosene strip.

India jet fuel/kerosene: The Mean of Platts West India Netback (MOPWIN) assessment for jet fuel/kerosene is derived by deducting freight costs from the assessment for the same product in Singapore. This assessment is a direct freight netback from the active trading hubs of Singapore and Japan, where daily prices are established from transparent and firm bids, offers and transactions between many active buyers and sellers. The West Coast India-Singapore clean freight assessment used for generating the netback values can be found in the Platts Clean Tankerwire.

Japan jet fuel/kerosene: Jet fuel/kerosene typically sold into Japan is around 20-21 Saybolt color. Platts surveys the market to determine the tradable levels for delivered MR vessels with the assessment made for C+F Chiba, Japan. Most cargoes trade on MOPS basis plus a differential.

South Korea jet fuel/kerosene: Jet fuel/kerosene is assessed

on a FOB Korea basis, reflecting cargoes for loading 15-30 days forward from the date of publication. Most cargoes trade on MOPS basis plus a differential.

China jet fuel/kerosene: Jet fuel/kerosene is assessed on a C+F basis main ports including Qinhuangdao, Shanghai and Huangpu. The assessment reflects MR vessels ranging from 25,000 to 45,000 mt. Cargoes reflect Saybolt color of minimum 20. Cargoes typically trade based on MOPS basis plus a differential.

Australia jet fuel/kerosene: Jet fuel/kerosene is assessed on a C+F Sydney/Melbourne basis, for MR vessels. The assessment is based on Singapore plus applicable freight. See "Platts netback methodology in Asia and the Middle East" at the end of this document for more information on how this value is calculated.

South Africa jet fuel/kerosene: Jet fuel/kerosene assessment reflects cargoes of 200,000 to 300,000 barrels on a delivered basis to South Africa. Platts calculates the netforward of the jet fuel/kerosene assessments CFR South Africa assessment by applying the Platts daily assessment for AG-South Africa 35,000 mt clean tanker assessment to the FOB Fujairah jet fuel/ kerosene assessment.

Sustainable Aviation Fuel (SAF): For more information of the Platts Southeast Asia SAF assessments please see: <u>https://</u> www.spglobal.com/platts/en/our-methodology/methodologyspecifications/agriculture/biofuels-methodology.

GASOIL

Assessment	CODE	Mavg	Pavg \	Wavg	CONTRACT BASIS	LOCATION	DELIVERY PERIOD	MIN SIZE	MAX SIZE	CURRENCY	UOM	CONV
Gasoil FOB Spore Cargo	POABC00	POABC03			FOB	Singapore	15-30 days	150,000	250,000	US\$	Barrels	7.45
Gasoil FOB Spore Cargo sulfur ppm	POABCSF				FOB	Singapore						NA
Gasoil MOPS strip	AAPJY00	AAPJY03				Singapore				US\$	Barrels	7.45
Gasoil MOPS strip sulfur ppm	AAPJYSF					Singapore						NA
Gasoil FOB Spore Cargo vs Gasoil MOPS strip	POAIC00	AAFDC00			FOB	Singapore	15-30 days	150,000	250,000	US\$	Barrels	7.45
Gasoil FOB Spore Cargo vs Gasoil MOPS strip sulfur ppm	POAICSF				FOB	Singapore						NA
Gasoil 0.001% S (10 ppm) FOB Spore Cargo	AAOVC00	AAOVC03			FOB	Singapore	15-30 days	150,000	250,000	US\$	Barrels	7.45
Gasoil 0.001% S (10 ppm) FOB Spore vs Gasoil MOPS strip	AAOVD00	AAOVD03			FOB	Singapore	15-30 days	150,000	250,000	US\$	Barrels	7.45
Gasoil 0.001% S (10 ppm) MOP West India \$/b	AAQWN00	AAQWN03			FOB	India		150,000	250,000	US\$	Barrels	7.45
Gasoil 0.001% S (10 ppm) MOP West India \$/mt	AAQW000	AAQW003			FOB	India		20,000	30,000	US\$	Metric tons	7.45
Gasoil 0.001% S (10 ppm) CFR Australia Cargo	AAQUD00	AAQUD03			FOB	Australia		150,000	250,000	US\$	Barrels	7.45
Gasoil 0.005% S (50 ppm) FOB Spore Cargo	AAPPF00	AAPPF03			FOB	Singapore	15-30 days	150,000	250,000	US\$	Barrels	7.45
Gasoil 0.005% S (50 ppm) FOB Spore Cargo vs Gasoil MOPS strip	AAPPH00	AAPPH03			FOB	Singapore	15-30 days	150,000	250,000	US\$	Barrels	7.45
Gasoil 0.001% S (10 ppm) FOB Arab Gulf Cargo	AAIDT00	AAIDT03			FOB	Arab Gulf				US\$	Barrels	7.45
Gasoil 0.001% S (10 ppm) FOB Arab Gulf vs MOPAG Gasoil	AAIDU00	AAIDU03			FOB	Arab Gulf	20-40 days	200,000	300,000	US\$	Barrels	7.45
Gasoil 0.005% S (50 ppm) FOB Arab Gulf Cargo	AASGJ00	AASGJ03			FOB	Arab Gulf				US\$	Barrels	7.45
Gasoil 0.005% S (50 ppm) FOB Arab Gulf vs MOPAG Gasoil	AASGK00	AASGK03			FOB	Arab Gulf	20-40 days	200,000	300,000	US\$	Barrels	7.45
Gasoil 0.05% S (500 ppm) FOB Arab Gulf Cargo	AAFEZ00	AAFFG00			FOB	Arab Gulf				US\$	Barrels	7.45
Gasoil 0.05% S (500 ppm) FOB Arab Gulf vs MOPAG Gasoil	AAFFD00	AAFFE00			FOB	Arab Gulf	20-40 days	200,000	300,000	US\$	Barrels	7.45
Gasoil 0.05% S (500 ppm) MOP West India \$/b	AAQWP00	AAQWP03			FOB	India		150,000	250,000	US\$	Barrels	7.45
Gasoil 0.05% S (500 ppm) MOP West India \$/mt	AAQWQ00	AAQWQ03			FOB	India		20,000	30,000	US\$	Metric tons	7.45
Gasoil 0.05% S (500 ppm) FOB Spore Cargo	AAFEX00	AAFEY00			FOB	Singapore	15-30 days	150,000	250,000	US\$	Barrels	7.45
Gasoil 0.05% S (500 ppm) FOB Spore Cargo vs Gasoil MOPS strip	AAFFB00	AAFFC00			FOB	Singapore	15-30 days	150,000	250,000	US\$	Barrels	7.45
Gasoil 0.25% S (2500 ppm) FOB Arab Gulf Cargo	AACUA00	AACUB00			FOB	Arab Gulf				US\$	Barrels	7.45
Gasoil 0.25% (2500 ppm) FOB Arab Gulf vs MOPAG Gasoil	AACUC00	AACUD00			FOB	Arab Gulf	20-40 days	200,000	300,000	US\$	Barrels	7.45
Gasoil 0.25% (2500 ppm) MOP West India \$/b	AAQWR00	AAQWR03			FOB	India		150,000	250,000	US\$	Barrels	7.45
Gasoil 0.25% (2500 ppm) MOP West India \$/mt	AAQWS00	AAQWS03			FOB	India		20,000	30,000	US\$	Metric tons	7.45
Gasoil 0.25% S (2500 ppm) FOB Spore Cargo	AACUE00	AACUF00			FOB	Singapore	15-30 days	150,000	250,000	US\$	Barrels	7.45
Gasoil 0.25% S (2500 ppm) FOB Spore Cargo \$/mt	AAXNB00	AAXNB03			FOB	Singapore	15-30 days	20,000	30,000	US\$	Metric tons	7.45
Gasoil 0.25% S (2500 ppm) FOB Spore Cargo vs Gasoil MOPS strip	AACQI00	AACTZ00			FOB	Singapore	15-30 days	150,000	250,000	US\$	Barrels	7.45
Gasoil FOB Japan Cargo	POJAP00	POJAP03			FOB	Japan	15-30 days	250,000	300,000	US\$	Barrels	7.45
Gasoil FOB Japan Cargo Premium/Discount	POJBP00	POJBP03			FOB	Japan	15-30 days	250,000	300,000	US\$	Barrels	7.45
Gasoil FOB Japan Cargo sulfur ppm	POJBPSF				FOB	Japan						NA
Gasoil FOB Arab Gulf Cargo	POAAT00	POAAT03			FOB	Arab Gulf				US\$	Barrels	7.45
Gasoil FOB Arab Gulf Cargo sulfur ppm	POAATSF				FOB	Arab Gulf						NA
Gasoil FOB Arab Gulf vs MOPAG Gasoil	POAID00	AAFDG00			FOB	Arab Gulf	20-40 days	200,000	300,000	US\$	Barrels	7.45
Gasoil FOB Arab Gulf vs MOPAG Gasoil sulfur ppm	POAIDSF				FOB	Arab Gulf						NA
Gasoil FOB Fujairah Cargo	AFUJK00	AFUJKØ3			FOB	Fujairah	20-40 days	200,000	300,000	US\$	Barrels	7.45

GASOIL

Assessment	CODE	Mavg	Pavg	Wavg	CONTRACT BASIS	LOCATION	DELIVERY PERIOD	MIN SIZE	MAX SIZE	CURRENCY	UOM	CONV
Gasoil 10 ppm FOB Fujairah Cargo	AFUJP00	AFUJP03			FOB	Fujairah	20-40 days	200,000	300,000	US\$	Barrels	7.45
Gasoil MOPAG Strip	AFUJL00	AFUJL03				Arab Gulf				US\$	Barrels	7.45
Gasoil FOB Korea Cargo	POAIE00	POAIF03			FOB	South Korea	15-30 days	150,000	250,000	US\$	Barrels	7.45
Gasoil FOB Korea Cargo sulfur ppm	POAIESF				FOB	South Korea						NA
Gasoil FOB Korea Cargo vs Gasoil MOPS strip	POAIG00	POAIH03			FOB	South Korea	15-30 days	150,000	250,000	US\$	Barrels	7.45
Gasoil FOB Korea Cargo vs Gasoil MOPS strip sulfur ppm	POAIGSF				FOB	South Korea						NA
Gasoil LP C+F South China Cargo	POAFA00	POAFA03			C+F	China		10,000	30,000	US\$	Metric Tons	7.45
Gasoil LP C+F South China Cargo sulfur ppm	POAFASF				C+F	China						NA
Gasoil LP C+F South China Cargo vs Gasoil MOPS strip	AABJZ00	AABKA00			C+F	China		70,000	200,000	US\$	Barrels	7.45
Gasoil LP C+F South China Cargo vs Gasoil MOPS strip sulfur ppm	AABJZSF				C+F	China						NA
Gasoil 10 ppm CFR South Africa Cargo	AAQWU00	AAQWU03			C+F	South Africa		200,000	300,000	US\$	Barrels	7.45
Gasoil 500 ppm CFR South Africa Cargo	AAQWV00	AAQWV03			C+F	South Africa		200,000	300,000	US\$	Barrels	7.45

Gasoil

Gasoil (Singapore): Platts FOB Singapore assessments reflect "FOB Straits" bids, offers and transactions. For FOB Straits transactions, sellers are required to nominate loading from one of the locations in Singapore and Malaysia that are approved for the Platts MOC assessment process as a delivery point.

Platts Singapore physical gasoil assessments reflect a minimum of 150,000 barrels, maximum 250,000 barrels, loading 15-30 days forward from the date of publication. Market participants should specify loading for a five-day date range at the time of submitting a bid or offer for publication in the assessment process. In circumstances where Platts reflects a volume range in its Asian and Middle East oil product assessments, the smallest volume within the published guidelines will take precedence in the assessment process. For example, a bid for 150,000 barrels of gasoil on a FOB Straits basis would take priority over an offer for 250,000 barrels, in cases where the bid and offer might cross due to volume differences.

Platts flagship Singapore Gasoil and Arab Gulf Gasoil netback assessments reflect a maximum sulfur content of 10 ppm.

Grades which are not widely merchantable -- for instance, gasoil with contaminants that are banned in certain major importing countries, including fatty acid methyl esters (FAME) -- will not be reflected in the assessments. Platts publishes a list of recognized additives contained in the FOB Singapore gasoil assessment process. This list follows a study of submissions from market participants, and is intended to provide clarity to market participants regarding which additives are generally considered to be merchantable and accepted for cargoes delivered through the Platts MOC assessment process in Singapore. Platts assessments for FOB Singapore Gasoil (10 ppm) reflect the inclusion of additives in cargoes that have been historically acceptable for delivery. Fuel additives that have been broadly delivered and accepted in FOB Straits trades reported through the Platts MOC assessment process continue to be reflected in the assessments, and are included in this list. Gasoil delivered through the Platts MOC assessment process is expected to be additive-free, or contain the additives in this list.

The full list of additives is in the table.

Gasoil 10 ppm: Minimum of 150,000 barrels, maximum 250,000 barrels, loading 15-30 days forward from the date of publication. Specifications as defined in table.

Gasoil 50 ppm: Minimum of 150,000 barrels, maximum 250,000 barrels, loading 15-30 days forward from the date of publication. Specifications as defined in table.

Gasoil 0.05% sulfur: Minimum of 150,000 barrels, maximum 250,000 barrels, loading 15-30 days forward from the date of publication. Specifications as defined in table.

Gasoil 0.25% sulfur: Minimum of 150,000 barrels, maximum 250,000 barrels, loading 15-30 days from the date of publication. Specifications as defined in table.

China gasoil: Gasoil is assessed on a C+F South China basis. The minimum volume assessed is 100,000 barrels or 10,000 -15,000 mt. The sulfur content of the gasoil cargoes assessed for delivery into China is 10 ppm. Ports are Huangpu and Shenzhen in South China, and Hong Kong. Deals into other areas are tracked but prices are different. Gasoil into North China may command a higher price due to geographical location. Assessment window is 15-30 days forward from the date of publication.

Japan gasoil: Gasoil is assessed on a FOB Japan basis reflecting cargoes with maximum 10 ppm sulfur. On October 1, 2020, Platts amended the underlying methodology for this assessment and launched a daily FOB Japan 10 ppm sulfur gasoil cash differential and a sulfur code for the cash differential assessment. The assessments reflect cargoes of 250,000-300,000 barrels in size, loading 15-30 days forward from the date of publication, and are normalized to loadings from Tokyo Bay.

South Korea gasoil: Gasoil is assessed on a FOB Korea basis reflecting cargoes with maximum 10 ppm sulfur. Platts surveys the market to determine the tradable levels for cargoes loading 15-30 days forward from the date of publication.

Middle East gasoil: FOB Arab Gulf gasoil reflects gasoil with a maximum of 10 ppm sulfur, and is assessed as a netback to the Singapore Gasoil assessment, using 55,000 mt freight rate. The freight rate reported in the Platts Clean Tankerwire is used for this netback. See "Platts netback methodology in Asia and the Middle East" at the end of this document for more information on how these values are calculated. The FOB Arab Gulf 0.25% sulfur. 0.05% sulfur and 0.005% sulfur assessments are derived by applying assessed spot premiums for those grades to the primary Gasoil assessment, minus the spot premium for standard 10 ppm gasoil itself. On May 18, 2020, Platts amended the methodology to include spot values and will only publish a zero or negative value for these netback benchmarks if prevailing market information demonstrates such values. This will mean that if a freight netback calculation would produce a value at or below zero, then Platts would consider relevant spot market information instead and use this in its assessment of FOB Arab Gulf values. Under this change, Platts would consider all gasoil grades together. On January 4, 2021, Platts discontinued the publication of its FOB Arab Gulf gasoil LR2 netback assessment and its corresponding netback freight rate and sulfur code.

Gasoil 0.005% sulfur (outright): Derived by applying spot differential assessed for 0.005% sulfur to the primary FOB AG Gasoil netback, minus the assessed spot AG differential for Gasoil itself. **Gasoil 0.05% sulfur (outright):** Derived by applying spot differential assessed for 0.05% sulfur to the primary FOB AG Gasoil netback, minus the assessed spot AG differential for Gasoil itself.

Gasoil 0.25% sulfur (outright): Derived by applying spot differential assessed for 0.25% sulfur to the primary FOB AG Gasoil netback, minus the assessed spot AG differential for Gasoil itself.

Middle East gasoil spot differentials: Platts assesses spot differentials for gasoil. These assessments, which are published as a spot market premium/discount to Platts existing Middle East Gasoil netback assessment, reflect the value of gasoil cargoes, typically 200,000 to 300,000 barrels each, for loading 20-40 days forward from the date of publication. Platts considers bids, offers, transactions, and reports of transactions when assessing these spot market differentials.

Cargoes loading from the following Arab Gulf ports would be considered for inclusion in the assessments: Jubail, Jebel Ali, Mina Al Ahmadi, Shuaiba, Ras Tanura, Ruwais, Mina Abdulla, Sohar, Sitra, Fujairah, Ras Laffan and any safe and sound port within this geographic area.

FOB Fujairah Gasoil and Gasoil 10 ppm sulfur assessments (outright): Platts assesses outright values for Gasoil and Gasoil 10 ppm sulfur cargoes on FOB Fujairah basis. The assessments reflect the value of Gasoil and Gasoil 10 ppm sulfur, typically 200,000 to 300,000 barrels each, for loading 20-40 days forward from the date of publication. Market participants should specify loading for a five-day date range at the time of submitting a bid or offer for publication. Platts will only publish offers where sellers specify at least one and no more than three representative load points and will only publish bids where buyers specify at least three representative load points. For all trades reported through the Platts MOC process, the seller would declare the terminal 12 days prior to loading. The buyer would nominate the vessel seven days prior to loading and narrow the loading window to three days, subject to terminal acceptance. The outright assessments equal the sum of the Middle East Gasoil or Gasoil 10 ppm sulfur spot differentials (premium/discount) and the MOPAG Gasoil strip. The MOPAG Gasoil strip is calculated using Gasoil derivatives that settle on the Platts Middle East Gasoil netback assessment. Platts also publishes assessments for MOPAG Gasoil derivatives for Balance Month, Month 1 and Month 2, as well as the MOPAG Gasoil strip.

India gasoil: The Mean of Platts West India Netbacks (MOPWIN) assessments for 10 ppm, 500 ppm and 0.25% sulfur gasoil are derived by deducting freight costs from the assessments for the same product in Singapore. The assessments are direct freight netbacks from the active trading hub of Singapore, where daily prices are established from transparent and firm bids, offers and transactions between many active buyers and sellers. West Coast India-Singapore clean freight assessments used for generating the netback values can be found in the Platts Clean Tankerwire.

Australia gasoil: Platts assesses 10 ppm gasoil on a C+F Sydney/Melbourne basis, in US dollars per barrel. The assessment reflects cargoes for MR vessels. The assessments are based on Singapore plus applicable freight. See "Platts netback methodology in Asia and the Middle East" at the end of this document for more information on how these values are calculated.

South Africa gasoil assessment: Platts assesses 10 ppm and 500 ppm gasoil assessments on CFR South Africa basis. The assessments reflect cargo sizes of 200,000 to 300,000 barrels on a delivered basis to South Africa. Platts calculates the netforward of the 10 ppm CFR South Africa assessment by applying the Platts daily assessment for AG-South Africa 35,000 mt clean tanker assessment to the FOB Fujairah 10 ppm assessment. The CFR South Africa Gasoil 500 ppm assessment is calculated by applying the FOB AG Gasoil 500 ppm premium/ discount to the MOPAG Gasoil Strip, and adding the Platts AG-South Africa 35,000 mt clean tanker assessment to this.

Hydrotreated Vegetable Oil (HVO): For more information of the Platts Southeast Asia HVO assessments please see: <u>https://</u> www.spglobal.com/platts/en/our-methodology/methodologyspecifications/agriculture/biofuels-methodology.

FOB SINGAPORE GASOIL / DIESEL SPECIFICATIONS

				0.001%S	0.005%S	0.05%S	0.25%S	
Property			Unit	10 ppm	50 ppm	500 ppm	2500 ppm	Test Methods
Acid Number, Total		Max	mg KOH/g	0.3	0.5	0.5	0.5	ASTM D664
Appearance @ 25°C	Pass Procedure 1	9	Visual test		Clear & bright, without or undissolved sediment o free water		pr	ASTM D4176 Proc 2
Ash content		Max	% weight	0.01	0.01	0.01	0.01	ASTM D482, EN ISO 6245
Cetane Index	Min		Range 0-100	46	48	48	48	ASTM D4737, EN ISO 4264
Cetane Number	Min		Range 0-100	51				ASTM D613, EN ISO 5165
Conradson Carbon Residue (10% distillation)		Max	% mass	0.2	0.2	0.2	0.1	ASTM D4530, EN ISO 10370
CFPP (Cold filter plugging point)		Max	°C	Minus 5				EN 116 / IP 309
Cloud point		Мах	°C	Minus 1				ASTM 2500, ISO 3015-92, JIS K 2269-87, EN 23015
Color		Мах	Grade	2	2	2	2	ASTM D1500 / IP 196
Conductivity @ 20°C	Min		pS/m	150				ASTM D2624, EN ISO 6297:1997
Copper corrosion (3 hrs @ 50°C)		Мах	Class	1	1	1	1	ASTM D130, EN ISO 2160
Density @ 15°C	Min-	Мах	g/ml	0.820-0.845	0.82-0.86	0.82-0.86	0.82-0.86	ASTM D4052, EN ISO 3675
Distillation T90 (90% recovered)		Мах	°C				360	ASTM D86, EN ISO 3405:1998
Distillation T95 (95% recovered)		Мах	°C	360	360	370		ASTM D86, EN ISO 3405:1998
Distillation volume recovered @ 250°C		Мах	%	65				EN ISO 3405:1998
Distillation volume recovered @ 350°C	Min		%	85				EN ISO 3405:1998
Filter blocking tendency		Max		2				ASTM D2068, IP 387
Flash point	Min		°C	66	66	66	66	ASTM D93, EN 22719
Fatty acid methyl esters (FAME)		Max	% volume	NIL	NIL	NIL	NIL	ASTM D7371
Kinematic viscosity @ 40°C	Min-	Max	CST	2.0-4.5	2.0-4.5	2.0-4.5	2.0-4.5	ASTM D445, EN ISO 3104
Lubricity (HFRR) (WSD 1,4) @ 60°C		Max	microns	460	460	460	460	ASTM D6079, IP 450, ISO 12156-1
Odor				Merchantable				
Oxidation stability		Max	mg/L	25				ASTM D2274, EN ISO 12205
Particulate matter		Max	mg/kg	24				EN 12662
Polyaromatic hydrocarbons (PAHs)		Max	% weight	11	11			IP 391:1995
Pour point		Мах	°C		9	9	9	ASTM D97
Sulfur content		Max	ppm	10	50	500	2500	ASTM D5453, EN ISO 20846/7 & 20884
Water content		Max	mg/kg	200				EN ISO 12937
Water & sediment		Max	% volume	0.05	0.05	0.05	0.05	ASTM D2709

ADDITIVES IN SINGAPORE AND THE MIDDLE EAST 10PPM

Additive type Antioxidant	Manufacturer Lanxess	Name BAYNOX Solution 20%	Additive type Cold Flow Improver	Manufacturer Infineum	Name Infineum R773	Additive type Flow Improver	Manufacturer Infineum	Name Infineum R567K
Antioxidant	Dorf Ketal	DORF 410C	Cold Flow Improver	Infineum	R274	Flow Improver	Infineum	Infineum R571
ntioxidant	Dorf Ketal	SR 1546	Cold Flow Improver	Infineum	R275D	Flow Improver	Infineum	Infineum R594
ntioxidant	Ondeo Nalco	EC 3053A	Cold Flow Improver	Infineum	R210	Flow Improver	Infineum	Infineum R773
ntioxidant	Betz	Spec-Aid 8Q5400	Cold Flow Improver	Infineum	R299	Flow Improver	Infineum	Infineum R756
ntioxidant	Lanxess	Vulkanox 4005	Cold Flow Improver	BASE	Keroflux 6170	Flow Improver	Infineum	Infineum R779
ntioxidant; Metal			Cold Flow improver	BASE	Keroflux 6206	Flow Improver	Infineum	Infineum R575
eactivator	Innospec	DGS-139	Cold Flow Improver	BASE	Keroflux 6214	Flow Improver	Sunhib	Sunhib S-206
letal Deactivator	Afton	HITEC 4705E	Cold Flow Improver	Innospec	OFI 7650	Flow Improver / Lubricity	Infineum	Infineum R216
ntioxidant	Afton	HiTEC 4733	Cold Flow Improver	CHIMEC	CH6835	Lubricity Improver	Dorf Ketal	SR2008
etane Improver	Ceptro Micet	2-Ethyl Hexyl Nitrate	Cold Flow Improver	Dorf Ketal	SR1651	Lubricity Improver	Dorf Ketal	SR2010
etane Improver	Deepak Nitrite	2-Ethyl Hexyl Nitrate	Cold Flow Improver	Nalco Champion	EC5918A	Lubricity Improver	WRT by	HFA 7025
etane Improver	Eurenco	2-Ethyl Hexyl Nitrate	Cold Flow Improver	Nalco Champion	EC5967A	Lubricity Improver	Infineum	Infineum R655
etane Improver	Innospec	2-Ethyl Hexyl Nitrate	Cold Flow Improver	Infineum	R225D	Lubricity Improver	Lubrizol	LZ539M
etane Improver	Innospec	C1-0801	Cold Flow Improver	Infineum	R294	Lubricity Improver	Chevron Texaco	ODA 78010
etane Improver	Very One	2-Ethylhexyl Nitrate	Cold Flow Improver	Infineum	R283	Lubricity Improver	Innospec	OLI 5500
etane Improver	Dorf Ketal	Cepro 100	Cold Flow Improver	Infineum	R387	Lubricity Improver	Infineum	Infineum R671
etane Improver	Innospec	CI-0801	Cold Flow Improver	Innospec	OFI 8863	Lubricity Improver	Nalco	Nalco EC5713A
etane Improver	WRT BV	HFA 3033	Cold Flow Improver	Innospec	OFI 8851	Lubricity Improver	Baker Petrolite	Tolad 5051C
etane Improver	Afton	HITEC 4103W	Cold Flow Improver	Innospec	OFI 7620	Lubricity Improver	NOF Corporation Japan	LE 772W
etane Improver	Lubrizol	Lubrizol 8090	Cold Flow Improver	Innospec	OFI 7683	Lubricity Improver	Sanyo Chemicals	Sanfric FM-6C
etane Improver	Total	Total RV100	Cold Flow Improver	Cestoil Chemical Inc	NORTHSHORE CF 20	Lubricity Improver	Infineum	Infineum R650
etane Improver	Zenteum	Zenteum ZR688	Cold Flow Improver	Cestoil Chemical Inc	NORTHSHORE CF 40	Lubricity Improver	Nalco	Nalco EC5719A
etane Improver	Kutch Chemical	2-Ethyl Hexyl Nitrate	Cold Flow Improver	Dorf Ketal	SR 1658	Lubricity Improver	Total	PC 32
etane Improver	Nalco	Nalco EC5308A	Cold Flow Improver	Baker Hughes	Tolad3034D	Lubricity Improver	Baker Hughes	T9121
- +	Xi'an Wonder Energy	WD10 F01	Cold Flow Improver	Baker Hughes	Tolad3034	Lubricity Improver	Afton	HITEC 4140A
etane Improver	Chemical Co	WD12-501	Cold Flow Improver	Baker Hughes	Tolad3750K	Lubricity Improver	Infineum	Infineum R650D
etane Improver	Baker Hughes	Tolad1347	Cold Flow Improver	Clariant	Dodiflow 6019	Lubricity Improver	Infineum	Infineum R655D
old Flow Improver	Total	7000L	Cold Flow Improver	Clariant	Dodiflow P-102A	Lubricity Improver	Infineum	R640
old Flow Improver	Total	CP 7134 L	Cold Flow Improver	Clariant	Dodiflow P-106A	Lubricity Improver	Infineum	R640D
old Flow Improver	Dorf Ketal	SR1637	Conductivity Improver	Dorf Ketal	SR 1795	Lubricity Improver	Total	PC 60
old Flow Improver	Dorf Ketal	SR1647	Conductivity Improver	Innospec	Stadis 425	Lubricity Improver	Infineum	R646
old Flow Improver	Dorf Ketal	SR 1609	Conductivity Improver	Innospec	Stadis 450	Lubricity improver	Innospec	OLI-8000
Cold Flow Improver	Infineum	Infineum R420	Conductivity Improver	Nalco	Nalco EC5580A	Lubricity improver	Innospec	OLI-9980
old Flow Improver	Infineum	Infineum R765	Conductivity Improver	Baker Hughes	T3514	Metal Deactivator	Innospec	DMD-2
old Flow Improver	Total	CP 7000L	Corrosion Inhibitor	Innospec	DCI-4A	WAFI Cold Flow	Infineum	Infineum R705
old Flow Improver	Clariant	Dodiflow 4028	Corrosion Inhibitor	Nalco	Nalco 5403	WAFI Cold Flow	Infineum	Infineum R231
Cold Flow Improver	Clariant	Dodiflow 4032	Corrosion Inhibitor	Afton	AvGuardTM CI/LI	WAFI Cold Flow	Infineum	Infineum R344
old Flow Improver	Clariant	Dodiflow 4313	Flow Improver	Sanyo Chemicals	Carroyl MD-336K	WAFI Cold Flow	Infineum	Infineum R709
old Flow Improver	Clariant	Dodiflow 6087	Flow Improver	Dorf Ketal	SR1649	WAFI Cold Flow	Clariant	Dodiflow 5416
old Flow Improver	Clariant	Dodiflow 4985	Flow Improver	Infineum	Infineum R222	WAFI Cold Flow	Clariant	Dodiflow 8054
old Flow Improver	Clariant	Dodiflow 5251	Flow Improver	Infineum	Infineum R240	MDFI Cold Flow	Infineum	Infineum R225
old Flow Improver	Clariant	Dodiflow 4744	Flow Improver	Infineum	Infineum R241	MDFI Cold Flow	Total	CP7870 C
old Flow Improver	Clariant	Dodiflow 3905	Flow Improver	Infineum	Infineum R375	MDFI Cold Flow	Total	CP7870 D
old Flow Improver	Dorf Ketal	SR 1690	Flow Improver	Infineum	Infineum R395	MDFI Cold Flow	Total	CP7000
old Flow Improver	Infineum	Infineum R587	Flow Improver	Infineum	Infineum R396	WASA Cold Flow	Infineum	Infineum R799
old Flow Improver	Infineum	Infineum R590	Flow Improver	Infineum	Infineum R570	Cold filter plugging point		

FOB MOPAG GASOIL SPECIFICATIONS

				0.001%S	
Property			Unit	10 ppm	Test Methods
Acid Number, Total		Max	mg KOH/g	0.3	ASTM D664
Appearance @ 25°C	Pass Procedure 1		Visual test	Clear & bright, without undissolved sediment or free water	ASTM D4176 Proc 2
Ash content		Max	% weight	0.01	ASTM D482, EN ISO 6245
Cetane Index	Min		Range 0-100	46	ASTM D4737, EN ISO 4264
Cetane Number	Min		Range 0-100	51	ASTM D613, EN ISO 5165
Conradson Carbon Residue (10% distillation)		Max	% mass	0.2	ASTM D4530, EN ISO 10370
CFPP (Cold filter plugging point)		Max	°C	Minus 5	EN 116 / IP 309
Cloud point		Max	°C	Minus 1	ASTM 2500, ISO 3015-92, JIS K 2269-87, EN 23015
Color		Max	Grade	2	ASTM D1500 / IP 196
Conductivity @ 20°C	Min		pS/m	150	ASTM D2624, EN ISO 6297:1997
Copper corrosion (3 hrs @ 50°C)		Max	Class	1	ASTM D130, EN ISO 2160
Density @ 15°C	Min-	Max	g/ml	0.820-0.845	ASTM D4052, EN ISO 3675
Distillation T90 (90% recovered)		Max	°C		ASTM D86, EN ISO 3405:1998
Distillation T95 (95% recovered)		Max	°C	360	ASTM D86, EN ISO 3405:1998
Distillation volume recovered @ 250°C		Max	%	65	EN ISO 3405:1998
Distillation volume recovered @ 350°C	Min		%	85	EN ISO 3405:1998
Filter blocking tendency		Max		2	ASTM D2068, IP 387
Flash point	Min		°C	66	ASTM D93, EN 22719
Fatty acid methyl esters (FAME)		Max	% volume	NIL	ASTM D7371
Kinematic viscosity @ 40°C	Min-	Max	cSt	2.0-4.5	ASTM D445, EN ISO 3104
Lubricity (HFRR) (WSD 1,4) @ 60°C		Max	microns	460	ASTM D6079, IP 450, ISO 12156-1
Odor				Merchantable	
Oxidation stability		Max	mg/L	25	ASTM D2274, EN ISO 12205
Particulate matter		Max	mg/kg	24	EN 12662
Polyaromatic hydrocarbons (PAHs)		Max	% weight	11	IP 391:1995
Pour point		Max	°C		ASTM D97
Sulfur content		Max	ppm	10	ASTM D5453, EN ISO 20846/7 & 20884
Water content		Max	mg/kg	200	EN ISO 12937
Water & sediment		Max	% volume	0.05	ASTM D2709

FUEL OIL

Assessment	CODE	Mavg	Pavg	Wavg	CONTRACT BASIS	LOCATION	DELIVERY PERIOD	MIN SIZE	MAX SIZE	CURRENC	Y UOM	CONV
FO 180 CST 3.5% S FOB Spore Cargo	PUADV00	PUADV03			FOB	Singapore	15-30 days	20,000	40,000	US\$	Metric Tons	6.35
FO 180 CST 3.5% S FOB Spore Cargo vs FO 180 CST MOPS strip	AAGZF00	AAGZG00			FOB	Singapore	15-30 days	20,000	40,000	US\$	Metric Tons	6.35
FO 180 CST 2.0% S FOB Spore Cargo	PUAXS00	PUAXS03			FOB	Singapore	15-30 days	20,000	40,000	US\$	Metric Tons	6.35
FO 180 CST FOB Arab Gulf Cargo	PUABE00	PUABE03			FOB	Arab Gulf		20,000	40,000	US\$	Metric Tons	6.35
FO 180 CST FOB Arab Gulf vs MOPAG 180 CST	AAXJA00	AAXJA03			FOB	Arab Gulf	20-40 days	20,000	40,000	US\$	Metric Tons	6.35
FO 180 CST 3.5% S MOPS Strip	AAPJX00	AAPJX03				Singapore				US\$	Metric Tons	6.35
FO 380 CST 3.5% S FOB Spore Cargo	PPXDK00	PPXDP03			FOB	Singapore	15-30 days	20,000	40,000	US\$	Metric Tons	6.35
FO 380 CST 3.5% S FOB Spore Cargo sulfur ppm	PPXDKSF				FOB	Singapore						NA
FO 380 CST MOPS Strip	AAPJW00	AAPJW03				Singapore				US\$	Metric Tons	6.35
FO 380 CST 3.5% S FOB Spore Cargo vs FO 380 CST MOPS strip	PPXDL00	AAFDD00			FOB	Singapore	15-30 days	20,000	40,000	US\$	Metric Tons	6.35
FO 380 CST 3.5% FOB Arab Gulf Cargo	AAIDC00	AAIDD00			FOB	Arab Gulf		20,000	40,000	US\$	Metric Tons	6.35
FO 380 CST FOB Arab Gulf vs MOPAG 380 CST	AAXJB00	AAXJB03			FOB	Arab Gulf	20-40 days	20,000	40,000	US\$	Metric Tons	6.35
FO 380 CST vs FO 180 CST FOB Arab Gulf	PPXDM00	AAFDI00			FOB	Arab Gulf	20-40 days	20,000	40,000	US\$	Metric Tons	6.35
FO 380 CST FOB Fujairah Cargo	AFUJQ00	AFUJQ03			FOB	Fujairah	20-40 days	20,000	40,000	US\$	Metric Tons	6.35
FO 380 CST MOPAG Strip	AFUJR00	AFUJR03				Arab Gulf				US\$	Metric Tons	6.35
FO 180 CST MOPAG Strip	AAYBD00	AAYBD03				Fujairah				US\$	Metric Tons	6.35
FO 380 CST Ex-wharf Fujairah	AAYBF00	AAYBF03			Ex-wharf	Fujairah	5-15 days	2,000	7,000	US\$	Metric Tons	6.35
Ex-wharf Fujairah 380 CST vs MOPAG 180 CST strip	AAYBG00	AAYBG03			Ex-wharf	Fujairah	5-15 days	2,000	7,000	US\$	Metric Tons	6.35
FOB Spore Marine Fuel 0.5% Cargo	AMFSA00	AMFSA03			FOB	Singapore	15-30 days	20,000	40,000	US\$	Metric Tons	6.35
FOB Spore Marine Fuel 0.5% MOPS strip	FOFSA00	FOFSA03				Singapore				US\$	Metric Tons	6.35
FOB Spore Marine Fuel 0.5% Cargo vs Marine Fuel 0.5% MOPS strip	FOFSB00	FOFSB03			FOB	Singapore	15-30 days	20,000	40,000	US\$	Metric Tons	6.35
FOB Spore Marine Fuel 0.5% Cargo vs FO 380 CST MOPS strip	AMOPA00	AMOPA03			FOB	Singapore	15-30 days	20,000	40,000	US\$	Metric Tons	6.35
FOB Fujairah Marine Fuel 0.5% Cargo	AMFFA00	AMFFA03			FOB	Fujairah	20-40 days	20,000	40,000	US\$	Metric Tons	6.35
FOB Fujairah Marine Fuel 0.5% MOPFUJ strip	FOFFA00	FOFFA03				Fujairah				US\$	Metric Tons	6.35
FOB Fujairah Marine Fuel 0.5% Cargo vs Marine Fuel 0.5% MOPFUJ stri	p FOFFB00	FOFFB03			FOB	Fujairah	20-40 days	20,000	40,000	US\$	Metric Tons	6.35
FOB Singapore Bitumen PEN 60-70	BTSGA00	BTSGA03			FOB	Singapore	15-30 days	4,000	6,000	US\$	Metric Tons	NA
FOB Singapore Bitumen PEN 60-70 vs FO 380 CST MOPS strip	BTSGB00	BTSGB03			FOB	Singapore	15-30 days	4,000	6,000	US\$	Metric Tons	NA
FOB South Korea Bitumen PEN 60-80	BTKRA00	BTKRA03			FOB	South Korea	15-30 days	4,000	6,000	US\$	Metric Tons	NA
FOB South Korea Bitumen PEN 60-80 vs FO 380 CST MOPS strip	BTKRB00	BTKRB03			FOB	South Korea	15-30 days	4,000	6,000	US\$	Metric Tons	NA

Fuel oil

Singapore fuel oil: Platts FOB Singapore assessments reflect "FOB Straits" bids, offers and transactions. All Platts fuel oil cargo and bunker assessments reflect specifications defined by the International Organization for Standardization in document ISO 8217:2010 Petroleum products - Fuels (class F) - Specifications of marine fuels. For FOB Straits transactions, sellers are required to nominate loading from one of the locations in Singapore and Malaysia that are approved for the Platts Market on Close assessment process as a delivery point.

All fuel oil assessments are typically based on cracked material. In Singapore, the HSFO 180 CST and HSFO 380 CST assessments reflect transactions, bids and offers for parcels of a minimum of 20,000 mt, maximum 40,000 mt per transaction, loading 15-30 days forward from the date of publication. Market participants should specify loading for a five-day date range when submitting bids and offers for publication. In circumstances where Platts reflects a volume range in its Asian and Middle East oil product assessments, the smallest volume within the published guidelines will take precedence in the assessment process. For example, a bid for 20,000 mt HSFO 380 CST on a FOB Straits basis would take priority over an offer for 40,000 mt, in cases where the bid and offer might cross due to volume differences.

Any terminal nominated for performance on FOB Straits fuel oil transaction concluded during the Platts assessment process should be able to receive an Aframax-sized vessel, which typically weighs 80,000 to 120,000 deadweight tons when fully loaded. The terminal should typically be able to manage at least one co-load of standard-sized cargoes of 20,000 to 40,000 mt. For instance, a vessel which is already carrying 20,000 mt of fuel oil should be able to load at least another 20,000 mt from a second terminal, without draft restrictions hindering a vessel's ability to leave the port.

Platts assesses 2.0% and 3.5% sulfur 180 CST reflecting RME 180 fuel specifications, 3.5% sulfur 380 CST FOB Singapore fuel oil reflecting RMG fuel specifications, and FOB Singapore Marine Fuel 0.5% sulfur reflecting RMG fuel specifications.

Any fuel oil cargo delivered as a result of a transaction completed and reported during the Platts Market on Close assessment process should be merchantable, including 180 CST fuel oil, which regularly moves within the utility and bunker markets. Among other characteristics, fuel oil should not contain Used Lubricants Oil (ULO), which would render fuel oil undeliverable into the bunkering market. Platts does not reflect fuel oil cargoes in its assessment process where ULOs are determined to be present. Product reflected in Platts fuel oil assessments shall not contain petrochemical wastes, residues from acid-catalyzed refining process, spent chemicals, waste lubricants, tar bottoms or hazardous waste. Furthermore, product containing any material proven to cause ship engine damage at certain reported levels is considered unmerchantable. For instance, Platts understands that fatty acid methyl esters, or FAME, is commonly found in fuel oil in trace amounts, and are not deemed harmful to ship engines at those levels. Platts is also aware that heavy fatty acids are not deemed harmful to ship engines when registering at trace levels.

Marine Fuel 0.5%: Platts launched daily cargo and barge

assessments for Marine Fuel 0.5% reflecting residual marine fuels (RMG fuels as defined by the International Organization for Standardization in document ISO 8217:2010 Petroleum products - Fuels (class F) - Specifications of marine fuels) with a maximum sulfur limit of 0.5% across the globe, and the addition of a minimum viscosity requirement of 30 CST at 50 degrees Celsius from April 1, 2020. Platts assessments take into consideration trading activity reported in Marine Fuel 0.5% and other relevant low sulfur material within the Asia and Middle East markets.

FOB Singapore Marine Fuel 0.5%: The assessment reflects FOB Straits bids, offers and trades for 20,000 to 40,000 mt cargoes loading 15-30 days forward from the date of publication. Market participants should specify loading for a five-day date range when submitting bids and offers for publication. Platts publishes FOB Singapore Marine Fuel 0.5% derivatives assessments for balance month, 12 subsequent months, inter-month spreads and four quarters from the month of publication. In addition, Platts publishes a MOPS strip for Marine Fuel 0.5% as well as a FOB Singapore Marine Fuel 0.5% differential to the strip.

FOB Fujairah Marine Fuel 0.5%: The assessment reflects bids, offers and trades for cargoes typically 20,000 to 40,000 mt each, for loading 20-40 days forward from the date of publication. Market participants should specify loading for a five-day date range at the time of submitting a bid or offer for publication. Platts will only publish offers where sellers specify at least one and no more than three representative load points and will only publish bids where buyers specify at least three representative load points. Cargoes loading from any safe and sound port within the region would be considered for the assessment and normalized for loading on FOB Fujairah basis. For all trades reported through the Platts MOC process, the seller would declare the terminal 12 days prior to loading. The buyer would nominate the vessel seven days prior to loading and narrow the loading window to three days, subject to terminal acceptance. Platts publishes FOB Fujairah Marine Fuel 0.5% derivatives assessments for balance month and two subsequent months. In

addition, Platts publishes a MOPFUJ strip for Marine Fuel 0.5% as well as an FOB Fujairah Marine Fuel 0.5% differential to the strip.

Following a detailed review of the market relationship between medium sulfur and low sulfur fuel oil FOB Singapore, Platts amended its methodology for assessing FOB Singapore 180 CST 2% sulfur cargoes. With effect from January 2, 2014, Platts assesses this value by applying a standard quality premium to its benchmark FOB Singapore HSFO 180 CST 3.5% sulfur assessment. Platts established this quality premium at 2.25% of the base value of FOB Singapore HSFO 180 CST 3.5%. For example, if Platts assesses the value of HSFO 180 CST 3.5% at \$600/mt, the quality premium would be \$13.50/mt and the outright price assessment for 180 CST 2% would be \$613.50/ mt. Platts made this adjustment to reflect the fact that liquidity in the medium sulfur fuel oil market has diminished to very low levels across Asia. The value reflects the relative premiums for the medium sulfur fuel over the period 2011-2013.

South Korea fuel oil: On June 1, 2020, Platts discontinued the publication of its FOB South Korea 180 CST and 380 CST cargo assessments. This follows low trading activity for HSFO in these markets that is set to shrink further as sulfur specifications in marine fuel change from 2020 under the new International Maritime Organization regulations.

Japan fuel oil: On June 1, 2020, Platts discontinued the publication of its C+F Japan 180 CST cargo assessment. This follows low trading activity for HSFO in this market that is set to shrink further as sulfur specifications in marine fuel change from 2020 under the new IMO regulations.

Middle East fuel oil: The Arab Gulf fuel oil HSFO 180 CST assessment is a netback to Singapore using 80,000 mt freight rates. Freight rates reported in the Platts Dirty Tankerwire are used to derive the FOB Arab Gulf fuel oil assessment. Density in the Arab Gulf varies and assessments include 0.96-0.975 kg/l. See "Platts netback methodology in Asia and the Middle East" at the end of this document for more information on how these values are calculated.

The Arab Gulf fuel oil HSFO 380 CST value is assessed as a netback to Singapore using 80,000 mt freight rates. Freight rates reported in the Platts Dirty Tankerwire are used to derive the FOB Arab Gulf fuel oil assessment. See "Platts netback methodology in Asia and the Middle East" at the end of this document for more information on how these values are calculated.

On May 18, 2020, Platts amended the methodology to include spot values and will only publish a zero or negative value for these netback benchmarks if prevailing market information demonstrates such values. This will mean that if a freight netback calculation would produce a value at or below zero, then Platts would consider relevant spot market information instead and use this in its assessment of FOB Arab Gulf values. Under this change, Platts would consider all fuel oil grades together. This would mean that if the netback calculation for any grade of fuel oil would produce a value at or below zero, all grades of fuel oil would be assessed based on spot market information.

Middle East fuel oil spot differentials: Platts assesses spot differentials for fuel oil. These assessments, which are published as a spot market premium/discount to Platts existing Middle East fuel oil netback assessments, reflect the value of fuel oil cargoes, typically 20,000 to 40,000 mt each, for loading 20-40 days forward from the date of publication. Platts considers bids, offers, transactions, and reports of transactions when assessing these spot market differentials. Platts assesses differentials for the following grades: HSFO 180 CST (premium/discount to HSFO 180 CST netback) and HSFO 380 CST (premium/discount to HSFO 380 CST netback). Cargoes loading from the following Arab Gulf ports would be considered for inclusion in the assessments: Jubail, Jebel Ali, Mina Al Ahmadi, Shuaiba, Ras Tanura, Ruwais, Mina Abdulla, Sohar, Sitra, Fujairah, Ras Laffan and any safe and sound port within this geographic area. The assessments are normalized to loadings in Fujairah for fuel oil.

FSU FOB SINGAPORE

Vessel name	Vessel's operator	Vessel's delivered date	IMO number	Flag	Vessel's anchored location	Type of hull	Summer deadweight
CS Prosperity	CSHA Shipping Co Ltd	05-Jan-99	9169691	Marshall Islands	Tanjung Pelepas, Johor state in southern Malaysia	Double Hull	311,224
Grace Star	Nathalin Shipping Pte Ltd	29-Jun-01	9205093	Thailand	Tanjung Pelepas, Johor state in southern Malaysia	Double Hull	312,638
CS Innovatior	n CSZ Shipping Co. Ltd.	14-Nov-97	9158886	Marshall Islands	Tanjung Pelepas, Johor state in southern Malaysia	Double Hull	299,885
CS Brilliance	CSHB Shipping Co. Ltd.	31-Mar-98	9153513	Marshall Islands	Tanjung Pelepas, Johor state in southern Malaysia	Double Hull	299,999
EMSplendour	Grandeur Pioneer (S) Pte Ltd	24-Feb-99	9176981	Marshall Islands	Tanjung Pelepas, Johor state in southern Malaysia	Double Hull	281,705
Crystal Star	Nathalin Shipping Pte Ltd	3-Jul-00	9182318	Thailand	Tanjung Pelepas, Johor state in southern Malaysia	Double Hull	298,570
New Global	Selmashipping OU	21-Sep-01	9235244	Panama	Tanjung Pelepas, Johor state in southern Malaysia	Double Hull	305,704
Phoenix Star	Nathalin Shipping Pte. Ltd	3-Sep-99	9180891	Thailand	Tanjung Pelepas, Johor state in southern Malaysia	Double Hull	307,151
Aquarius Star	⁻ Nathalin Shipping Pte. Ltd	28-Mar-01	9196618	Thailand	Tanjung Pelepas, Johor state in southern Malaysia	Double Hull	298,641
ITG Amoy	ITG Energy (Singapore) Pte. Ltd	16-Apr-03	9237620	Panama	Tanjung Pelepas, Johor state in southern Malaysia	Double Hull	318,778

FOB Fujairah 380 CST Fuel Oil assessment (outright): Platts

assesses an outright value for 380 CST fuel oil cargoes on FOB Fujairah basis. The assessment reflects the value of 380 CST fuel oil cargoes, typically 20,000 to 40,000 mt each, for loading 20-40 days forward from the date of publication. Market participants should specify loading for a five-day date range at the time of submitting a bid or offer for publication. Platts will only publish offers where sellers specify at least one and no more than three representative load points and will only publish bids where buyers specify at least three representative load points. For all trades reported through the Platts MOC process, the seller would declare the terminal 12 days prior to loading. The buyer would nominate the vessel seven days prior to loading and narrow the loading window to three days, subject to terminal acceptance. The outright assessment equals the sum of Middle East 380 CST Fuel Oil spot differential (premium/discount) and MOPAG 380 CST strip. The MOPAG strip is calculated using 380 CST Fuel Oil derivatives that settle on Platts Middle East 380 CST Fuel Oil netback assessments. Platts publishes assessments for MOPAG 380 CST Fuel Oil derivatives for Balance Month, Month 1

and Month 2, as well as the MOPAG 380 CST Fuel Oil strip.

FOB Fujairah 380 CST Fuel Oil ex-wharf: Platts assesses

Fujairah ex-wharf 380 CST fuel oil on an outright basis and a floating price basis, at the close of 5:30 pm Singapore time or 1:30 pm Fujairah time. The assessment reflects spot trading activity in 5,000 mt parcels of 380 CST fuel oil for lifting 5-15 days forward from the date of publication. Platts considers bids, offers and trades for volumes between 2,000 mt and up to a maximum of 7.000 mt, with values normalized to 5.000 mt where needed. Market participants should specify loading for a three-day date range at the time of submitting a bid or offer for publication. The outright assessment equals the sum of Ex-wharf Fujairah 380 CST Fuel Oil spot differential (premium/ discount) and the MOPAG 180 CST strip. Platts also publishes assessments for MOPAG 180 CST Fuel Oil derivatives for Balance Month, Month 1 and Month 2 at 5:30 pm Singapore time as well as a forward strip value for 5-15 days at 5:30 pm Singapore time. On June 1, 2020, Platts discontinued the publication of the MOPAG 180 CST Fuel Oil derivatives for Balance Month, Month 1

and Month 2 at 4:30 pm Singapore time.

Parcels may be delivered via inter-tank transfers where possible, or to the buyer's nominated vessel/barge from an onshore terminal or offshore vessel within the port limits of Fujairah. The buyer should nominate the barge/vessel between two and five working days in advance of the load date as per current industry practices at the various load terminals. The seller should notify the buyer of barge acceptance promptly and within a reasonable time. But the acceptance is subject to terminal availability. Seller should supply material that is merchantable.

Floating Storage Units: The standards applicable to approved floating storage units require that sellers specifically name the vessel used as a loading point at the time of providing an offer for publication in the Platts MOC assessment process. Any vessel accredited for the FOB Singapore fuel oil and Marine Fuel 0.5% assessment process would be on FOB FSU basis only, and cannot be nominated into a FOB Straits transaction reported during the MOC process except by mutual agreement between counterparties. The full list of vessels approved as loading points in the FOB Singapore fuel oil and Marine Fuel 0.5% MOC process can be found in the table.

BITUMEN

Property	UNIT	TEST METHOD	FOB Singapore	FOB South Korea
Density @ 15°C	kg/L	ASTM D70	1 min	1 min
Ductility at 25°C, 5 cm/min	cm	ASTM D113	100 min	100 min
Softening Point, R&B	°C	ASTM D36	48 min	46 min
Penetration at 25°C, 100 g for 5 sec	mm	ASTM D5	60 to 70	60 to 80
Penetration of Residue after loss on Heating	% of original	ASTM D6/D5	80 min	61 min
Flash Point, COC	°C	ASTM D92	232 min	230 min
Loss on Heating	% m/m	ASTM D6/ D1754	0.5 max	0.6 max
Wax Content	% m/m	DIN EN 12606-1/ DIN52015	2 max	2.2 max
Solubility	% m/m	ASTM D2042	99.5 min	99.5 min

Bitumen

Platts publishes bitumen assessments in Asia-Pacific basis FOB Singapore and FOB South Korea at the close of Asian trading at 4:30pm SGT. Both assessments reflect spot trading activity in 4,000-6,000 mt parcels loading 15-30 days forward from the date of publication. Both assessments are published in USD/mt on an outright basis as well as a differential to benchmark Platts FOB Singapore 380 CST high sulfur fuel oil assessments. The differentials represent the premium or discount over the 15-30 day forward MOPS Strip value assessed using 380 CST HSFO swaps.

FOB Singapore Bitumen PEN 60-70: The FOB Singapore assessment reflects bulk PEN 60-70 grade bitumen. The assessment reflects FOB Straits cargoes loading from refineries and storage terminals in the Singapore Strait capable of handling bitumen. Platts understands that these currently include SRC and ExxonMobil refineries on Jurong Island, Shell refinery on Bukom Island and Puma Energy's Langsat bitumen terminal. Platts publishes bids or interest to buy from participants basis FOB Straits only if they're willing to accept loading from any of the above-listed facilities. Platts publishes offers or interest to sell basis FOB Straits from participants if they're willing to deliver product only from one of the abovelisted facilities. Sellers can't unilaterally nominate a port other than those listed above following conclusion of a trade basis FOB Straits. In addition, Platts may publish bids, offers and trades from other ports in Malaysia and Indonesia and normalize them basis FOB Straits. Companies submitting their bids or offers for any loading port other than those listed above must specify it at the time of submitting their orders to Platts for publication.

FOB South Korea Bitumen PEN 60-80: The FOB South Korea assessment reflects bulk PEN 60-80 grade bitumen. The FOB South Korea assessment reflects cargoes loadings from the ports of Yeosu, Ulsan/Busan, Daesan and Onsan. Platts would consider publication of bids, offers and trades from other South Korean ports and normalize them basis Yeosu. Companies submitting their bids or offers for a location other than those listed above must specify it at the time of submitting their order to Platts for publication. Buyers or sellers cannot unilaterally change load port after conclusion of the trade.

Platts Asia bitumen assessment methodology reflects standard industry trade terms that include demurrage, which may be payable in case of delays. Platts may publish bids, offers and trades that exclude demurrage from the terms and conditions, and may use the information in the assessment process after normalization. Market participants who wish to exclude demurrage from the trade terms must clearly state that when communicating their bids, offers or trades to Platts editors at the time of publication. Market participants should note that nomination of a "noncommensurate" ship should not expose the seller to incur additional costs associated with the large-sized ship. The buyer has the right to nominate a non-commensurate ship to load a cargo traded via the Singapore Platts Market on Close assessment process from S&P Global, while the seller has the obligation to accept a commensurate ship and try to accommodate a non-commensurate ship if the terminal scheduling permits.

The sellers' exposure to demurrage and laytime should not exceed the normal associated demurrage and laytime of a commensurate ship.

LSWR

Platts discontinued the FOB Indonesia LSWR and FOB Indonesia LSWR Mixed/Cracked assessments from April 1, 2019, and recommended a one-time differential of minus \$3.50/b for FOB Indonesia LSWR and plus \$1/b for FOB Indonesia LSWR Mixed/ Cracked to Platts FOB Singapore Marine Fuel 0.5% assessment that may be used in amending LSWR contracts which settle against Platts LSWR assessments after April 1, 2019. The discontinuation follows decline in spot market activity for LSWR across the Asia Pacific on falling production due to refinery upgrades. Platts FOB Singapore Marine Fuel 0.5% assessment is published in US dollar per metric ton (\$/mt). The assessment currently reflects a metric ton-to-barrel conversion factor of 6.35. Platts published FOB Indonesia LSWR and FOB Indonesia LSWR Mixed/Cracked assessments in \$/b, reflecting conversion factors of 6.50 and 6.80, respectively.

Platts netback methodology in Asia and the Middle East (2022 rates)

The following document contains the methodology for product netbacks and netforwards used in Asia-Pacific.

Please note that the flat rates are changed once a year on the first working day of the new year and are applicable till the last working day of the year.

Platts publishes freight spot assessments for dirty and clean tankers. The freight assessments are published primarily as percentages against a Worldscale (WS) rate.

In the following examples, the base rate is multiplied against the spot market multiplier to obtain the actual freight cost. For example, a Worldscale rate of 200 implies a freight rate that is twice the base rate.

This document outlines Platts freight methodology for gasoline, naphtha, fuel oil, gasoil and jet fuel/kerosene and Australian netback assessments.

Gasoline freight methodology

Arab Gulf netback

Flat basis rate from Jebel Ali to Singapore at \$13.60/mt

Basis rate calculations for AG to Singapore:

Quoin Island to Singapore base rate + Jebel Ali to Quoin Island base rate + Jebel Ali port charges

Formula: Freight = Spot WS x 13.60/ 8.5

To convert between metric tons and barrels use 8.5.

Naphtha freight methodology

1. Singapore netback

Base rate from Singapore to Chiba, Japan

Formula: Freight = Spot WS x 30 / 26.25 x base rate

2. Arab Gulf netback

Flat basis rate from AG to Japan at \$25.40/mt

Basis rate calculations for AG to Japan:

A) Quoin Island to Chiba/Yokohama base rateB) Average of the following:

Jubail/Mina Al Ahmadi to Quoin Island base rate + Jubail port charges = 2.75 Mina Al Ahmadi/Ras Tanura to Quoin Island base rate + Ras Tanura port charges = 2.94 Ruwais/Mina Abdulla to Quoin Island base rate AG to Japan = total of A and B

Formula: Freight = Spot WS x 55 / 52.50 x 25.40

For Naphtha LR2 netback:

Spot 75,000 mt: Freight = Spot WS x 25.40

Fuel Oil freight methodology

1. Japan netback

Base rate from Singapore to Chiba/Yokohama, Japan

Formula: Freight = Spot WS x base rate

2. Arab Gulf netback Flat basis rate calculations for AG to Singapore:

Quoin Island to Singapore base rate + Mina al-Ahmadi to Quoin Island base rate

Formula: Freight = Spot WS x basis rate

Gasoil/Jet/Kerosene freight methodology

Arab Gulf netback

Flat basis rate from AG to Singapore at 13.51/mt

Basis rate calculations for AG to Singapore:

A) Quoin Island to Singapore base rateB) Average of the following:

Jubail to Quoin Island base rate + Jubail port charges = 1.60 Bahrain to Quoin Island base rate Ras Tanura to Quoin Island base rate + Ras Tanura port charges = 1.72 Mina al-Ahmadi to Quoin Island base rate AG to Singapore = total of A and B

Formula: Freight = Spot WS x 13.51

The final calculation is divided by 7.45 for gasoil and 7.9 for jet fuel/kerosene to convert m into b.

Australian netback assessments

Base freight rate from Singapore to Melbourne/Sydney, Australia

To obtain the actual freight Platts will determine the spot rate from Singapore to Australia, multiplied by the base rate and the result will be divided by the conversion rate to convert \$/mt into \$/b.

1) C+F Australian Mogas:

Freight = Spot WS x base rate/ 8.5

2) C+F Australia Gasoil:

Freight = Spot WS x base rate / 7.45

3) C+F Australia Jet:

Freight = Spot WS x base rate/ 7.9

REVISION HISTORY

August 2022: Platts completed an annual review of this methodology guide and made minor edits to the language for clarity and consistency. Platts updated this guide to reflect the inclusion of Dialog Terminals Langsat 3 as a loading point in its Singapore Market on Close assessment process for gasoline from Aug. 1, 2022. Platts also updated the storage capacity for ATB terminal. The FSU table was updated to reflect the change in operator and flag for the new Global FSU.

July 2022: Platts updated this guide to reflect the inclusion of the vessel Phoenix Star (IMO 9180891) from June 1, 2022, Aquarius Star (IMO 9196618) and ITG Amoy (IMO 9237620) from June 16, 2022 as additional loading points in the Platts Singapore MOC for cargo and ex-wharf bunkers for Marine Fuel 0.5% and 380 CST HSFO. Platts clarified that its Asia bitumen assessment methodology reflects standard industry trade terms that include demurrage, which may be payable in case of delays. Platts included nine new 10 ppm sulfur gasoil additives from May 15. Effective April 8, 2022, Platts naphtha cargoes C+F Japan (min 70%) (NCJCA00), C+F Japan (PAAAD00), C+F South Korea (PAADE00) and CFR Singapore (AAOVF00) and related differential, netback and net-forward assessments no longer reflect Russia-origin product.

April 2022: Platts updated this guide to reflect amended freight rates used to calculate its FOB Arab Gulf assessments for naphtha, gasoil and jet fuel/kerosene as netbacks from Singapore following the introduction of new marine terminal assistance fees for Ras Tanura port from April 1, 2022, the inclusion of a new 10 ppm sulfur gasoil additive from March 31, 2022, and the removal of the vessel Brilliant Jewel (IMO 9244867) as an additional loading point in the Platts Singapore MOC process for cargo and ex-wharf bunkers for Marine Fuel 0.5% and 380 CST HSFO from March 18, 2021.

February 2022: Platts updated this guide to reflect the inclusion of Dialog Terminals Pengerang 5 as a loading point

in the Singapore MOC process for jet fuel/kerosene from Feb. 7, 2022, and the amendment of the description for FOB Arab Gulf viscosity spread (PPXDM00) assessment with effect from Jan. 17, 2022, to ensure consistent terminology across Platts publications. Information in the guide pertaining to Oiltanking Karimun terminal was revamped to enhance clarity.

January 2022: Platts updated this guide to incorporate the 2022 freight netback calculations for all products. The Straits terminals list was updated to reflect the new entity name for Jurong Port Universal Terminal.

November 2021: Platts updated the guide to add new Asia bitumen assessments launched on Nov. 1, 2021; and to update the base freight rates for its Middle East product netback assessments to reflect a flat rate change for AG-Singapore jet fuel and gasoil product routes. These updated rates were effective for netbacks published from November 1, 2021 onwards.

October 2021: Platts updated the guide to reflect the removal of the vessel Fortune Star (IMO 9183374) as an additional loading point in the FOB Singapore fuel oil and Marine Fuel 0.5% Market on Close assessment process from Oct. 5, 2021. The guide was also updated to include a new 10 ppm sulfur gasoil additive, and the inclusion of Dialog Terminals Pengerang 5 as a loading point in the Singapore MOC process for gasoil from Oct. 1, 2021. Platts included two new 10 ppm sulfur gasoil additives from Sept. 15, and removed the vessel Global M (IMO 9165932) as an additional loading point in the FOB Singapore fuel oil and Marine Fuel 0.5% MOC process from Sept. 16, 2021.

August 2021: Platts completed an annual review of this methodology guide in July 2021 and made minor edits to the language. Typos under some delivery periods, cargo sizes in the oil product tables were amended. Details on merchantability of fuel oil were added.

June 2021: Platts updated this guide to reflect the removal of the vessel Jubilee Star (IMO 9118381) as an additional loading

point in the FOB Singapore fuel oil and Marine Fuel 0.5% assessment process from June 1, 2021.

May 2021: Platts updated this guide to reflect the inclusion of the New Global (IMO 9235244) from May 17, 2021 and Global M (IMO 9165932) from May 18, 2021, and the removal of the PIS Pioneer (IMO 9294563) on May 18, 2021 as additional loading points in the FOB Singapore Marine Fuel 0.5% and fuel oil MOC assessment process. Typos on the doctor test parameter in the Singapore gasoline specifications tables were corrected.

April 2021: Platts updated this guide to reflect the latest conversion factors for MOPWIN 95 RON gasoline and MOPWIN 10 ppm sulfur gasoil, and the amendment of the port basket and rename of freight routes originating from West Coast India used in the MOPWIN assessments from April 1, 2021. The guide was also updated to reflect the removal of the vessel Energy Star (IMO 9118393) from March 25, 2021, and the inclusion of the PIS Pioneer (IMO 9294563) from March 29, 2021 as an additional loading point in the FOB Singapore Marine Fuel 0.5% and fuel oil MOC assessment process. Platts launched new C+F Japan naphtha (min 70%) outright and spot cash differential assessments from April 16, 2021. Platts also updated the ownership structure of Universal Terminal in the Straits terminal table.

March 2021: Platts updated this guide to reflect the discontinuation of the C+F Japan gasoil premium/discount assessment from February 1, 2021. The guide was also updated to include new Asian renewable fuel valuations launched January 18, 2021. Typographical errors in the conversion factors for MOPWIN 95 RON gasoline and MOPWIN 10 ppm sulfur gasoil, and the hydrogen sulfide content for propane cargoes in the Asian refrigerated LPG assessments were amended. Platts added a new gasoil 10 ppm additive Innospec OLI-9980 to the list of additives on March 1, 2021.

January 2021: Platts updated this guide to incorporate the 2021 freight netback calculations for all products. The guide was

also updated to reflect the discontinuation of the publication of the FOB Arab Gulf jet fuel/kerosene, gasoil LR2 netback assessments, as well as their associated netback freight rates and gasoil LR2 sulfur code from January 4, 2021.

December 2020: Platts updated this guide to reflect the removal of the vessel PIS Pioneer (IMO 9294563) as an additional loading point in the FOB Singapore Marine Fuel 0.5% assessment process from December 3, 2020.

November 2020: Platts updated this guide to include guidelines for its FOB Fujairah oil products assessment process, volume range for its Asian and Middle East crude oil and products assessment process, and standardized location basis for FOB Fujairah assessments to Fujairah. The LPG assessment table was also updated to remove symbol codes to the monthly averages of propane and butane FOB AG 20-40 days cargo Month to Date which were discontinued from July 1, 2013.

November 2020: Platts updated this guide to clarify the maximum oxygenates content of 50 ppm in the C+F Japan, C+F South Korea and FOB Arab Gulf naphtha specifications reflects the total of all oxygenates present in the cargo. Examples of typical oxygenates include, but are not limited to TAME, MTBE and ETBE. Platts also clarified the units and reformatted the specifications tables for the C+F Japan, C+F South Korea and FOB Arab Gulf naphtha assessments. The units for paraffins, olefins and n-paraffins are expressed as % volume, units for sulfur, chlorine, total oxygenates and carbon disulfide are expressed as weight, ppm and units for mercury, arsenic and lead are in weight, ppb. Specific gravity at 60°F and density at 15 deg C are expressed as g/ml. Platts has clarified the unit for mercaptan sulfur in its FOB Singapore gasoline specifications to reflect weight, ppm, the unit for density at 15°C in its FOB Arab Gulf gasoline specifications to reflect g/ml, and the unit for fatty acid methyl esters (FAME) in its Singapore gasoil and Arab Gulf gasoil specifications to reflect % volume. The specifications tables for LPG and gasoline were also reformatted.

October 2020: Platts updated the guide to reflect the addition of the vessel Fortune Star (IMO 9183374) to the list of additional loading points for the FOB Singapore fuel oil and Marine Fuel 0.5% Market on Close assessment process from October 12, 2020. The guide was also updated to reflect the change in methodology for the FOB Japan gasoil assessment and launch of a FOB Japan gasoil cash differential and sulfur code for the cash differential assessment from October 1, 2020. Typographical errors in the gasoil assessment table were corrected.

September 2020: Platts removed the vessel CS Development (IMO 9133850) on September 9, 2020 and added the Brilliant Jewel (IMO 9244867) from September 21, 2020 to the list of additional loading points for the FOB Singapore fuel oil and Marine Fuel 0.5% Market on Close assessment process. The guide was also updated to reflect the launch of FOB Fujairah naphtha and FOB Fujairah 92 RON gasoline assessments, as well as the MOPAG naphtha and 92 RON gasoline strips from September 1, 2020.

August 2020: Platts completed an annual review of this methodology guide in August 2020 and made minor edits to the language. The guide was updated to reflect the discontinuation of the South China 90 RON gasoline assessment and the change in the South China 93 RON gasoline assessment to reflect a 92 RON grade from August 3, 2020. Platts also updated the guide to reflect the addition of PIS Pioneer (IMO 9294563) as an additional loading point in the FOB Singapore Marine Fuel 0.5% assessment process from August 21, 2020. Platts also updated this guide to reflect the discontinuation of balance month, Month 1 and Month 2 MOPAG 180 CST HSFO derivatives at the 4:30 pm Singapore close from June 1, 2020. Typographical errors in the propane section of the LPG specifications table were corrected.

June 2020: Platts updated this guide to reflect its decision to begin publishing offers of fuel oil and Marine Fuel 0.5% from PT Oiltanking Karimun Terminal in Indonesia from June 1, 2020, and the addition of Crystal Star (IMO 9182318) as an additional delivery point in the FOB Singapore Marine Fuel 0.5% assessment process from June 1, 2020. Platts also updated the guide to reflect the discontinuation of the 3.5% 180 CST HSFO C+F Japan, 3.5% 180 CST HSFO FOB Korea and 3.5% 380 CST HSFO FOB Korea cargo assessments from June 1, 2020. The decision follows low trading activity for HSFO in these markets that is set to shrink further as sulfur specifications in marine fuel change from 2020 under the new International Maritime Organization regulations.

May 2020: Platts updated this guide to reflect the change in methodology for its gasoline, naphtha, gasoil, jet fuel/kerosene and fuel oil FOB Arab Gulf benchmarks from May 18, 2020. Under the change, Platts will only publish a zero or negative value for these benchmarks if prevailing market information demonstrates such values. This will mean that if a freight netback calculation would produce a value at or below zero, then Platts would consider relevant spot market information instead and use this in its assessment of FOB Arab Gulf values. Platts would consider all gasoline grades together, all gasoil grades together, and all fuel oil grades together. This would mean that if the netback calculation for any grade of gasoline would produce a value at or below zero, all grades of gasoline would be assessed based on spot market information. Platts would also consider all naphtha cargo sizes together, all jet fuel/kerosene cargo sizes together, and all gasoil cargo sizes together. This would mean that if the netback calculation for any cargo size of jet fuel/kerosene would produce a value at or below zero, all cargo sizes of jet fuel/kerosene would be assessed based on spot market information. Platts also updated the ownership structure of Universal Terminal in the terminal list table.

April 2020: Platts updated the Marine Fuel 0.5% section to reflect the addition of a minimum viscosity requirement of 30 CST at 50 degrees Celsius for its global Marine Fuel 0.5% assessments from April 1, 2020.

March 2020: Platts updated the fuel oil section by restating specifications around fuel oil and Marine Fuel 0.5% and

removed specification tables for those products. The FSU FOB Singapore table was updated to include the vessel EM Splendour (IMO 9176981) as an additional delivery point in the FOB Singapore Marine Fuel 0.5% assessment process from February 12, 2020. The FOB Straits terminal list was updated to add an approval column for Platts Marine Fuel 0.5% from March 2020, latest capacity of Pengerang Independent Terminals Sdn Bhd at southern Malaysia's Tanjung Pengerang and ownership structure at that terminal, as well as a breakdown of ownership structure at the Oiltanking Karimun terminal. The naphtha table has been updated to include FOB Singapore, C+F Japan and FOB AG assessments expressed in \$/mt and cents/gallon that were started on March 1, 2018.

January 2020: Platts updated this guide to incorporate the 2020 freight netback calculations for all products. Platts also made several changes to the Asia LPG assessments from January 2, 2020. Under these changes, Platts has renamed some of its Asia refrigerated propane and butane assessments, and has started reflecting new specifications for all its Asia refrigerated LPG assessments. Platts has also redefined the basis used in the differential assessments in Asia and the Middle East. As a result of the change, Platts has discontinued its Asia Contract Price strip assessments and two Middle East differential assessments.

December 2019: Platts updated the FOB Singapore gasoline specifications to reflect "colorless to light yellow" in the color property for its FOB Singapore 92 RON unleaded, 95 RON unleaded and 97 RON unleaded gasoline assessments starting December 2, 2019.

November 2019: Platts updated the guide to include a new 10 ppm sulfur gasoil additive from October 15, 2019 and two new 10 ppm sulfur gasoil additives from September 16, 2019 to the list of additives, and clarified language around the Middle East naphtha spot differential.

September 2019: Platts launched a FOB Singapore 95 RON

gasoline cash differential assessment (price database code AGUMA00), and monthly average FOB Singapore 95 RON gasoline cash differential assessment (price database code AGUMA03). Platts also launched a new FOB Singapore 95 RON gasoline MOPS Strip (price database code AGUMS00), and monthly average FOB Singapore 95 RON gasoline MOPS Strip (price database code AGUMS03). In August 2019, Platts completed an annual review of this methodology guide. In this update, the cargo size for FOB China gasoline was amended, and the premium of 92 RON Unl gasoline FOB Arab Gulf to MOPAG gasoline was added to the table. The units of measurement were amended for South China jet fuel and LP gasoil, and MOPS West India gasoil netbacks in the table. The premium of 180 CST 2.0% sulfur fuel oil cargo against the 180 CST MOPS strip was removed as it was discontinued. The list of Gulf ports that are considered for inclusion in the oil products assessments is revised to state Sitra port instead of Bahrain, and Quoin Island is removed.

August 2019: Platts removed the vessel Marine Star (IMO 9002623) from the list of additional delivery points for the FOB Singapore fuel oil Market on Close assessment process on August 1, 2019.

July 2019: Platts updated the FSU FOB Singapore table to include the vessel CS Brilliance (IMO: 9153513) as an additional delivery point for the FOB Singapore high sulfur fuel oil Market on Close assessment process from July 17, 2019, and vessel operator for Energy Star. The LPG freight section has been moved to the global freight methodology guide. In the netback methodology section, Platts has amended the size of the LR2 freight rate listed for gasoil LR2 netback to 80,000 mt, from 75,000 mt.

July 2019: Platts updated the FOB Singapore gasoline specifications to reflect Reid Vapor Pressure at a maximum of 9.0 PSI, from the previous 9.5 PSI, final boiling point at maximum 215 degrees Celsius from a maximum of 225 degrees Celsius, and lowered the maximum sulfur content in all three gasoline grades to a maximum of 50 ppm (0.005%), from 350 ppm (0.035%) previously. In addition, because of the reduction of the sulfur content to a maximum of 50 ppm, the maximum aromatics content is set at 40%, while a maximum olefins content is set at 25% effective July 1, 2019. Platts also launched a FOB Singapore high sulfur 92 RON gasoline cash differential assessment (price database code PGAFY00), and monthly average FOB Singapore high sulfur 92 RON gasoline cash differential (price database code PGAFY03) on July 1, 2019. The Straits terminals list was updated to include Jurong Port Tank Terminals as a loading point in the Singapore MOC assessment process for gasoline starting July 1, 2019, and the change in names of two terminals at Tanjung Langsat to Dialog Terminals Langsat (1) Sdn Bhd (DTL1) and Dialog Terminals Langsat (2) Sdn Bhd (DTL2) from LgT-1 and LgT-2 respectively effective May 8, 2019, following a change in ownership structure.

May 2019: Platts removed several 10 ppm sulfur gasoil additives from the list of additives and added one lubricity additive. The vessels CS Innovation (IMO: 9158886) and CS Development (IMO: 9133850) were added to, and the Fortune Star (IMO: 9183374) was removed from the list of additional delivery points for the FOB Singapore fuel oil Market on Close assessment process. Platts has removed references to LSWR as the FOB Indonesia LSWR and FOB Indonesia LSWR Mixed/Cracked assessments were discontinued from April 1, 2019, and Platts has recommended a one-time differential of minus \$3.50/b for FOB Indonesia LSWR and plus \$1/b for FOB Indonesia LSWR Mixed/ Cracked to Platts FOB Singapore Marine Fuel 0.5% that may be used in amending LSWR contracts which settle against Platts LSWR assessments after April 1, 2019. The specifications table for Marine Fuel 0.5% sulfur has been added. Platts has also updated the guide to include references to FOB Singapore and FOB Fujairah Marine Fuel 0.5% derivatives that were launched on May 2, 2019, and updated the fuel oil table.

April 2019: Platts added several new gasoil 10 ppm additives to the list of additives. Platts completed an annual update to sections 1 to 6 of Platts Methodology and Specifications Guides in April 2019, and moved these sections into a standalone Methodology Guide.

January 2019: Platts updated this guide to incorporate the 2019 freight netback calculations for all refined products, including the removal of the Shuaiba reference from the annual flat rate basket used for calculating the Arab Gulf to Japan naphtha netback assessments as well as an updated list of floating storage units reflected in its FOB Singapore fuel oil assessment process. Platts discontinued CFR South China 0.2% sulfur gasoil FOB Okinawa and C+F Japan gasoil assessments with effect from October 1, 2018. Effective January 2, 2019 Platts uses the Singapore-Australia 35kt clean MR freight assessments to calculate gasoline, gasoil and jet fuel CFR Australia netforward prices. Platts amended the cargo size reflected in its Middle East naphtha spot cargo differential assessment to 25,000-75,000 mt from the previous 25,000 mt, as of January 2, 2019. Platts added references to Marine Fuel 0.5% assessments launched on January 2, 2019. Platts amended fuel oil specifications to align them with ISO 8217:2010 standards reflected in Platts fuel oil assessments from January 2, 2019. Removed the tanker Speranza (now known as Hercules 1) (IMO:9002609) from the list of additional delivery points, as Platts no longer reflects loading from the vessel in FOB Singapore fuel oil assessments effective Jan 14, 2019.

September 2018: Platts completed an annual review of this methodology guide in September 2018, and made the following changes: Platts updated the nomination standards related to FOB Straits transactions after clarifying additional guidelines in a Subscriber Note published September 4, 2018; In the LPG section Platts removed references to previously discontinued assessments and also corrected an error in normalization basis for FOB East China assessment. In gasoline section, Platts added references to FOB Singapore 91 RON gasoline assessments that were launched in April 2018. In gasoil section, Platts added references to FOB Japan gasoil assessments launched in May, 2018. Platts also updated the guide to reflect changes in the specifications of its LSWR (V-1250) assessments and differentials for LSWR Mixed/Cracked assessments. Platts added references to the tankers CS Prosperity, Grace Star, Marine Star that were included as additional delivery points in

the FOB Singapore fuel oil MOC from August 2018; Removed reference to the tanker Amity Star from the list of additional delivery point, as Platts no longer reflects loading from the vessels in FOB Singapore fuel oil assessments effective May 27, 2018; Platts also added references to CFR South Africa assessments for clean products launched in August 2018. Platts has also revised Part I to Part VI of this guide. Following this revision Platts has moved the explanation of the MOPS and MOPAG Strips to Part VII of the guide. The revision also clarified that Platts no longer accepts Fax as a mode of communication for MOC participation. Platts also added a new section I to VI, and moved the explanation of the MOPS Strip to Section VII.

March 2018: Platts updated the guide to remove reference to FSU Jade Palms as Platts no longer reflects deliveries from the tanker in its FOB Singapore fuel oil assessments effective Feb 21, 2018. Platts also added new gasoil 10 ppm additives to the list of additives. Platts removed references to certain Taiwanese and Saudi Arabian posted bunker prices whose publication was discontinued March 1, 2018. CFR South Korea naphtha specifications were updated to reflect changes effective Oct 2, 2017 that raised the minimum paraffin level to 70% from the earlier 65%. Platts also removed guidance on bunkers from the guide as it has been moved to the Global Bunkers Guide.

January 2018: Platts updated this guide to reflect changes in the sulfur specification reflected in its Singapore, Arab Gulf, Korea and China gasoil assessments to a maximum of 10 ppm, effective January 2, 2018. Platts updated the 2018 freight netback calculations for all products. Platts also added reference to SCP Banyan facility's inclusion in the FOB Straits MOC process for gasoil and jet/kero assessments from November 1, 2017. Platts updated the list of additives reflected in 10ppm assessments to reflect two Baker Hughes additives. The update also removes reference to Hong Kong marine gasoil delivered bunker assessments that were discontinued November 1, 2017.

October 2017: Platts completed an annual update to the Asia

& Middle East Refined Oil Products Guide in September 2017: Platts updated the guide to added methodology descriptions for new delivered LSMGO and LSMDO assessments launched at Asian ports starting June 1, 2017. Platts updated the base freight rates for its Middle East product netback assessments to reflect a flat rate change for AG-Singapore naphtha and gasoil product routes. These updated rates were effective for netbacks published from May 3, 2017 onwards. The revision also added Platts decision to begin publishing offers of oil products from PT Oiltanking Karimun Terminal in Indonesia from July 3, 2017, and made edits for style and increased brevity to the FOB Straits section of this guide. Platts added a new gasoil 10 ppm additive to the list of additives. Platts added methodology descriptions for new MOPAG 92 RON cash differentials assessments launched on August 1, 2017. Platts clarified the maximum cargo size reflected in bids and offers for gasoline. Platts also updated the gasoline specifications reflected in its 92 RON and 95 RON cargoes loading in the Middle East. The update also reflects change in timestamp for Fujairah ex-wharf fuel oil assessments. Further, the update adds Jubilee Star to the list of approved FSUs reflected as additional delivery points in the Platts FOB Singapore fuel oil assessments. The update also reflects change to the CFR Japan naphtha and CFR South Korea naphtha specification. Platts updated jet fuel references to reflect Defence Standard 91-091 as defined by the UK Ministry of Defence and the Joint Fueling System Checklist, following an update to the numbering system used by UK Ministry of Defence and the Joint Fueling System Checklist.

March 2017: Platts updated this guide to add the newly launched FOB Fujairah 380 CST Fuel Oil ex-wharf assessment, and the discontinuation of Taiwan CPC's posted term prices for bunker fuels and publication of daily spot bunker prices by CPC. Platts also updated the unit of measurement for MOPS Strip naphtha from metric tons to barrels. Platts also updated the size of vessel for under its Middle East gasoline assessments from 30,000 mt to 35,000 mt.

January 2017: Platts added a new gasoil 10 ppm additive to

the list of additives - Infineum R567K. Platts also updated the base freight rates for its Asian and Middle East product netback assessments to reflect published 2017 rates.

October 2016: Platts completed an annual update to the Asia & Middle East Refined Oil Products Guide in October 2016: Platts updated the guide to added methodology descriptions for new assessments launched on October 3, 2016, reflecting independent outright values for gasoline, jet fuel, gasoil and fuel oil on a FOB Fujairah basis. Platts also added explanations for related MOPAG derivatives and MOPAG strips for these products. Platts updated the Worldscale flat basis rate used to calculate FOB Arab Gulf assessments for gasoil and jet/kerosene, following an announcement from the Worldscale Association on a Bahrain port tariffs increase. Platts updated the grade to add previously published clarifications that fuel oil delivered through the MOC assessment process should not include ULO. The guide was also updated to include FSUs that were approved as additional delivery points for fuel oil cargoes, and new bunker assessments for delivered bunker fuel at Busan. India and Sri Lanka. Platts added one new gasoil 10 ppm additive to the list of additives. Platts updated the gasoline specification to reflect Reid Vapor Pressure specification to a maximum of 9.5 PSI, from the current 10 PSI. Platts reduced the maximum benzene content from 5% currently to 2.5% volume and moved all three gasoline grades down to a maximum of 350 parts per million (0.035%), from 500 ppm (0.05%) previously. Platts also discontinued the assessments of FOB Singapore spot naphtha (under the code AAOVE00), FOB Singapore naphtha premium (under the code PAADCOO), Monthly Average FOB Singapore spot naphtha (under the code AAOVE03) and Monthly average FOB Singapore naphtha premium (under the code AAFDE00).

March 2016: Platts updated a typographical error on naphtha Arab Gulf netback calculation. Platts also added four new gasoil 10 ppm additives to the list of additives.

January 2016: Platts updated this guide to incorporate the

2016 freight netback calculations for all products, as well as an updated list of floating storage units reflected in its FOB Singapore fuel oil assessment process.

December 2015: Platts updated this guide to incorporate new CFR Singapore naphtha assessments, which included a specification table contained in this methodology guide. Platts also added new additivities to the Platts gasoil additives list. Platts updated this guide to reflect approval of gasoil loadings from Power Seraya for inclusion in the FOB Straits. Platts completed reviews to include the Speranza and Jade Palms tankers as additional delivery points in its FOB Singapore fuel oil assessment process, Platts confirmed it would include the FSUs in its Market on Close assessment process with effect from September 25, 2015. Platts also updated its description of its MOC trade review process.

July 2015: Platts completed an annual update to the Asia & Middle East Refined Oil Products Guide in July 2015. In this update, Platts reviewed all content. Platts updated guidance around how to report information and expectations for contactability. Platts also consolidated guidance regarding review of reported trades. In the specifications section of the guide, Platts updated this guide to reflect changes to its Singapore assessments for gasoline, jet fuel, gasoil and fuel oil through the FOB Straits price discovery process. Platts also updated the description of CFR Japan LPG and naphtha assessment cycles. Platts clarified its description of Aframax vessels in its fuel oil assessments. Platts clarified the language around post-deal tracking and "gapping." Platts also made minor typographical edits throughout.

May 2015: Platts updated this guide to reflect changes to Middle East premium assessments, the launch of Gasoil 10 ppm Middle East assessments, clarification around additives in Gasoil 10 ppm assessments and clarification around the Taiwan CPC posted bunker prices. This methodology guide was also updated to include further description of Platts' processes and practices in survey assessment environments. The guide was also updated to reflect changes to the Worldscale flat basis rate used to calculate FOB Arab Gulf assessments. Platts also made minor edits throughout.

December 2014: Platts updated this guide to incorporate changes to nomination procedures for terminals for FOB Singapore trades reflected in the MOC process. Platts also amended an error in the listing of volumes reflected by Singapore ex-wharf assessments. Platts updated the guide to include guidelines around trade of non-competitive bids and offers. And Platts updated the base freight rates for its Asian netback assessments to reflect published 2015 Worldscale rates.

November 2014: Platts updated this guide to incorporate standards for compensation expectations for late performance. Similar guidance had been present in methodologies published before August 2013.

September 2014: Platts updated this guide to reflect the discontinuation of spot premiums for second month loading for butane and propane FOB Middle East, and to reflect the amendment of the C+F Japan gasoil assessment to a specification of maximum 10 ppm sulfur. Platts removed an erroneous reference to a Singapore ex-wharf marine gasoil, which Platts does not assess.

June 2014: Platts completed an annual update to the Asia & Middle East Refined Oil Products Guide in June 2014. In this update, Platts reviewed all content. The guide was updated to rename "Asia Proxy" as "Asia Strip" for LPG strip values; further clarify and differentiate Singapore's naphtha netback and spot naphtha assessment; incorporate published guidance around contaminants and FAME in Singapore gasoil assessments; break out definitions for gasoil assessments and netbacks in the Middle East; remove references to previously discontinued fuel oil assessments for China; indicate discontinued fuel oil assessments for South Korea and Japan; remove a reference to discontinued bunker fuel postings from Chimbusco; and remove a reference to Pasir Gudang in the bunker fuel assessment section. Platts consolidated guidelines around publishing information during the MOC assessment process into the MOC Data Publishing Principles section, and incorporated clarification guidance about how to express interest in bids and offers that were published in January 2014 and May 2014. Platts also made minor typographical edits throughout.

January 2014: Platts updated this guide to note changes to its bunker fuel assessment publication schedule; add 500CST bunker fuel specifications; note changes to Singapore gasoline specifications for distillation and density; changes to its Singapore 2% sulfur fuel oil assessment methodology; discontinuation of China fuel oil assessments; and the 2014 freight netback calculations for all products.

December 2013: Platts updated the units of measurement reflected for West India and the Middle East in the gasoline assessment definitions table contained in this methodology guide.

November 2013: Platts updated this guide, making minor edits through the text. Platts also noted plans to updates its methodology for 2% sulfur fuel oil in Singapore with effect from January 2014. Platts also noted plans to discontinue all China fuel oil assessments from January 2014. This update also notes a planned change to specifications reflected in Platts Singapore gasoline assessments from January 2014.

August 2013: Platts revamped all Oil Methodology And Specifications Guides, including its Asia Pacific & Middle East Refined Oil Products guide, in August 2013. This revamp was completed to enhance the clarity and usefulness of all guides, and to introduce greater consistency of layout and structure across all published methodology guides. Methodologies for market coverage were not changed through this revamp, unless specifically noted in the methodology guide itself.